Activation of muscarinic receptors modulates NMDA receptor-mediated responses in auditory cortex. 1997

V B Aramakis, and A E Bandrowski, and J H Ashe
Department of Neuroscience, University of California, Riverside 92521, USA.

The present study examines the ability of muscarinic receptor activation to modulate glutamatergic responses in the in vitro rat auditory cortex. Whole-cell patch-clamp recordings were obtained from layer II-III pyramidal neurons and responses elicited by either stimulation of deep gray matter or iontophoretic application of glutamate receptor agonists. Iontophoresis of the muscarinic agonist acetyl-beta-methylcholine (MCh) produced an atropine-sensitive reduction in the amplitude of glutamate-induced membrane depolarizations that was followed by a long-lasting (at least 20 min) response enhancement. Glutamate depolarizations were enhanced by MCh when elicited in the presence of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or 2,3-dihydroxy-6-nitro-7-sulfamoyl, benzo(F)quinoxaline (NBQX) but not the NMDA antagonists D-2-amino-5-phosphonovaleric acid (APV) or MK-801 hydrogen maleate. The magnitude of enhancement was voltage-dependent with the percentage increase greater at more depolarized membrane potentials. An involvement of NMDA receptors in these MCh-mediated effects was tested by using AMPA/kainate receptor antagonists to isolate the NMDA-mediated slow excitatory postsynaptic potential (EPSP) from other synaptic potentials. The slow EPSP and iontophoretic responses to NMDA were similarly modified by MCh, i.e., both being reduced during and enhanced (15-55 min) following MCh application. Cholinergic modulation of NMDA responses involves the engagement of G proteins, as enhancement was prevented by intracellular infusion with the nonhydrolyzable GDP analog guanosine-5'-O-(2-thiodiphosphate) trilithium salt (GDPbetaS). GDPbetaS was without effect on the early MCh-induced response suppression. Our results suggest that acetylcholine, acting at muscarinic receptors, produces a long-lasting enhancement of NMDA-mediated neurotransmission in auditory cortex, and that this modulatory effect is dependent upon a G protein-mediated event.

UI MeSH Term Description Entries
D008297 Male Males
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001303 Auditory Cortex The region of the cerebral cortex that receives the auditory radiation from the MEDIAL GENICULATE BODY. Brodmann Area 41,Brodmann Area 42,Brodmann's Area 41,Heschl Gyrus,Heschl's Gyrus,Auditory Area,Heschl's Convolutions,Heschl's Gyri,Primary Auditory Cortex,Temporal Auditory Area,Transverse Temporal Gyri,Area 41, Brodmann,Area 41, Brodmann's,Area 42, Brodmann,Area, Auditory,Area, Temporal Auditory,Auditory Areas,Auditory Cortex, Primary,Brodmanns Area 41,Cortex, Auditory,Cortex, Primary Auditory,Gyrus, Heschl,Gyrus, Heschl's,Gyrus, Transverse Temporal,Heschl Convolutions,Heschl Gyri,Heschls Convolutions,Heschls Gyri,Heschls Gyrus,Primary Auditory Cortices,Temporal Auditory Areas,Temporal Gyrus, Transverse,Transverse Temporal Gyrus
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D016202 N-Methylaspartate An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA). N-Methyl-D-aspartate,NMDA,N-Methyl-D-aspartic Acid,Acid, N-Methyl-D-aspartic,N Methyl D aspartate,N Methyl D aspartic Acid,N Methylaspartate
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

V B Aramakis, and A E Bandrowski, and J H Ashe
January 2008, Brain research,
V B Aramakis, and A E Bandrowski, and J H Ashe
November 2006, Neuroreport,
V B Aramakis, and A E Bandrowski, and J H Ashe
April 2007, Neuroscience,
V B Aramakis, and A E Bandrowski, and J H Ashe
January 2012, PloS one,
V B Aramakis, and A E Bandrowski, and J H Ashe
January 1996, Science (New York, N.Y.),
V B Aramakis, and A E Bandrowski, and J H Ashe
September 1998, The European journal of neuroscience,
V B Aramakis, and A E Bandrowski, and J H Ashe
January 1992, Clinical neuropharmacology,
V B Aramakis, and A E Bandrowski, and J H Ashe
August 1992, Neuroscience letters,
V B Aramakis, and A E Bandrowski, and J H Ashe
December 1999, Neurophysiologie clinique = Clinical neurophysiology,
Copied contents to your clipboard!