Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus. 1997

K Schneider, and U Gollan, and M Dröttboom, and S Selsemeier-Voigt, and A Müller
Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie der Universität Bielefeld, Germany.

The component proteins of the iron-only nitrogenase were isolated from Rhodobacter capsulatus (delta nifHDK, delta modABCD strain) and purified in a one-day procedure that included only one column-chromatography step (DEAE-Sephacel). This procedure yielded component 1 (FeFe protein, Rc1Fe), which was more than 95% pure, and an approximately 80% pure component 2 (Fe protein, Rc2Fe). The highest specific activities, which were achieved at an Rc2Fe/Rc1Fe molar ratio of 40:1, were 260 (C2H4 from C2H2), 350 (NH3 formation), and 2400 (H2 evolution) nmol product formed x min(-1) x mg protein(-1). The purified FeFe protein contained 26 +/- 4 Fe atoms; it did not contain Mo, V, or any other heterometal atom. The most significant catalytic property of the iron-only nitrogenase is its high H2-producing activity, which is much less inhibited by competitive substrates than the activity of the conventional molybdenum nitrogenase. Under optimal conditions for N2 reduction, the activity ratios (mol N2 reduced/mol H2 produced) obtained were 1:1 (molybdenum nitrogenase) and 1:7.5 (iron nitrogenase). The Rc1Fe protein has only a very low affinity for C2H2. The Km value determined (12.5 kPa), was about ninefold higher than the Km for Rc1Mo (1.4 kPa). The proportion of ethane produced from acetylene (catalyzed by the iron nitrogenase), was strictly pH dependent. It corresponded to 5.5% of the amount of ethylene at pH 6.5 and was almost zero at pH values greater than 8.5. In complementation experiments, component 1 proteins coupled very poorly with the 'wrong' component 2. Rc1Fe, if complemented with Rc2Mo, showed only 10-15% of the maximally possible activity. Cross-reaction experiments with isolated polyclonal antibodies revealed that Rc1Fe and Rc1Mo are immunologically not related. The most active Rc1Fe samples appeared to be EPR-silent in the Na2S2O4-reduced state. However, on partial oxidation with K3[Fe(CN)6] or thionine several signals occurred. The most significant signal appears to be the one at g = 2.27 and 2.06 which deviates from all signals so far described for P clusters. It is a transient signal that appears and disappears reversibly in a redox potential region between -100 mV and +150 mV. Another novel EPR signal (g = 1.96, 1.92, 1.77) occurred on further reduction of Rc1Fe by using turnover conditions in the presence of a substrate (N2, C2H2, H+).

UI MeSH Term Description Entries
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008982 Molybdenum A metallic element with the atomic symbol Mo, atomic number 42, and atomic weight 95.95. It is an essential trace element, being a component of the enzymes xanthine oxidase, aldehyde oxidase, and nitrate reductase. Molybdenum-98,Molybdenum 98
D009591 Nitrogenase An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1. Dinitrogenase,Vanadium Nitrogenase,Nitrogenase, Vanadium
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations

Related Publications

K Schneider, and U Gollan, and M Dröttboom, and S Selsemeier-Voigt, and A Müller
May 1992, FEBS letters,
K Schneider, and U Gollan, and M Dröttboom, and S Selsemeier-Voigt, and A Müller
April 2003, Biochemistry,
K Schneider, and U Gollan, and M Dröttboom, and S Selsemeier-Voigt, and A Müller
June 1990, Zeitschrift fur Naturforschung. C, Journal of biosciences,
K Schneider, and U Gollan, and M Dröttboom, and S Selsemeier-Voigt, and A Müller
March 2002, European journal of biochemistry,
K Schneider, and U Gollan, and M Dröttboom, and S Selsemeier-Voigt, and A Müller
February 1991, European journal of biochemistry,
K Schneider, and U Gollan, and M Dröttboom, and S Selsemeier-Voigt, and A Müller
July 1994, The Journal of biological chemistry,
K Schneider, and U Gollan, and M Dröttboom, and S Selsemeier-Voigt, and A Müller
January 1992, Biochimica et biophysica acta,
K Schneider, and U Gollan, and M Dröttboom, and S Selsemeier-Voigt, and A Müller
May 2003, FEMS microbiology letters,
K Schneider, and U Gollan, and M Dröttboom, and S Selsemeier-Voigt, and A Müller
May 1993, Journal of bacteriology,
K Schneider, and U Gollan, and M Dröttboom, and S Selsemeier-Voigt, and A Müller
March 2001, Canadian journal of microbiology,
Copied contents to your clipboard!