Identification of the major casein kinase I phosphorylation sites on erythrocyte band 3. 1997

C C Wang, and M Tao, and T Wei, and P S Low
Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.

Human erythrocyte band 3 is a major substrate of two red blood cell protein kinases, casein kinase I and p72syk protein tyrosine kinase. Although the phosphorylation sites and physiologic consequences of p72syk phosphorylation have been characterized, little is known regarding casein kinase I phosphorylation. In this report, we identify the major phosphorylation site of casein kinase I. Using isolated components, casein kinase I was found to phosphorylate the cytoplasmic domain of band 3 (CDB3), primarily on Thr residues. Classical peptide mapping narrowed the major phosphorylation site to a peptide encompassing residues 24-91. Computer-assisted evaluation of this sequence not only showed two consensus casein kinase I phosphorylation sites, but also provided information on how to proteolytically separate and isolate the candidate sites. Following the suggested protocols, a heptapeptide containing the major phosphorylation site was isolated, subjected to amino acid sequencing, and found to be phosphorylated on Thr 42. A minor phosphorylation site was similarly identified as Ser 303. Because Thr 42 is situated near the binding sites on CDB3 of ankyrin, protein 4.1, protein 4.2, and the glycolytic enzymes, phosphorylation of CDB3 by casein kinase I could conceivably impact erythrocyte structure and/or function.

UI MeSH Term Description Entries
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072377 Syk Kinase An SH2 domain-containing non-receptor tyrosine kinase that regulates signal transduction downstream of a variety of receptors including B-CELL ANTIGEN RECEPTORS. It functions in both INNATE IMMUNITY and ADAPTIVE IMMUNITY and also mediates signaling in CELL ADHESION; OSTEOGENESIS; PLATELET ACTIVATION; and vascular development. SYK Tyrosine Kinase,Spleen Tyrosine Kinase,Kinase, SYK Tyrosine,Kinase, Spleen Tyrosine,Kinase, Syk,Tyrosine Kinase, SYK,Tyrosine Kinase, Spleen
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001457 Anion Exchange Protein 1, Erythrocyte A major integral transmembrane protein of the ERYTHROCYTE MEMBRANE. It is the anion exchanger responsible for electroneutral transporting in CHLORIDE IONS in exchange of BICARBONATE IONS allowing CO2 uptake and transport from tissues to lungs by the red blood cells. Genetic mutations that result in a loss of the protein function have been associated with type 4 HEREDITARY SPHEROCYTOSIS. Anion Transport Protein, Erythrocyte,Band 3 Protein,Erythrocyte Anion Transport Protein,Erythrocyte Membrane Band 3 Protein,AE1 Anion Exchanger,AE1 Chloride-Bicarbonate Exchanger,AE1 Cl- HCO3- Exchanger,AE1 Gene Product,Anion Exchanger 1,Antigens, CD233,Band 3 Anion Transport Protein,Band III Protein,CD233 Antigen,CD233 Antigens,Capnophorin,EPB3 Protein,Erythrocyte Anion Exchanger,Erythrocyte Membrane Anion Transport Protein,Erythrocyte Membrane Protein Band 3, Diego Blood Group,Protein Band 3,SLC4A1 Protein,Solute Carrier Family 4 Member 1,Solute Carrier Family 4, Anion Exchanger, Member 1,AE1 Chloride Bicarbonate Exchanger,AE1 Cl HCO3 Exchanger,Anion Exchanger, Erythrocyte,Antigen, CD233,Chloride-Bicarbonate Exchanger, AE1,Exchanger 1, Anion,Protein, EPB3

Related Publications

C C Wang, and M Tao, and T Wei, and P S Low
February 2002, European journal of biochemistry,
C C Wang, and M Tao, and T Wei, and P S Low
May 2009, Biochemical and biophysical research communications,
C C Wang, and M Tao, and T Wei, and P S Low
January 1991, Biochimica et biophysica acta,
C C Wang, and M Tao, and T Wei, and P S Low
November 1999, The Journal of biological chemistry,
C C Wang, and M Tao, and T Wei, and P S Low
August 1993, The Journal of biological chemistry,
C C Wang, and M Tao, and T Wei, and P S Low
October 1989, FEBS letters,
C C Wang, and M Tao, and T Wei, and P S Low
October 1995, The Journal of biological chemistry,
C C Wang, and M Tao, and T Wei, and P S Low
July 2005, Biochemical and biophysical research communications,
Copied contents to your clipboard!