Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. 1997

R Storb, and C Yu, and J L Wagner, and H J Deeg, and R A Nash, and H P Kiem, and W Leisenring, and H Shulman
Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98104-2092, USA.

Postgrafting cyclosporine (CSP) given for 35 days resulted in establishment of stable marrow grafts from DLA-identical canine littermates after otherwise suboptimal, but nevertheless, lethal conditioning with 450 cGy of total body irradiation (TBI). We now asked whether sustained allografts could be achieved after sublethal TBI or without TBI. Five groups of recipients were studied. Dogs in group 1 were given 200 cGy TBI and postgrafting CSP, 15 mg/kg twice daily by mouth on days -1 to 35 posttransplant. Dogs in group 2 were given 200 cGy TBI and methotrexate (MTX), 0.4 mg/kg intravenously (I.V.) on days 1, 3, 6, and 11 along with CSP. Dogs in group 3 were given 200 cGy TBI and CSP along with mycophenolate mofetil (MMF), 10 mg/kg twice daily subcutaneously (S.C.) on days 0 to 27 after transplant, a novel immunosuppressive combination. Dogs in group 4 were given 100 cGy TBI and MMF/CSP. Dogs in group 5 were not given TBI and they received MMF/CSP posttransplant. Allografts were assessed by (Ca)n dinucleotide repeat polymorphism studies in cells from peripheral blood, lymph nodes, and marrow. Dogs in group 1 had transient mixed donor-host hematopoietic chimerism for no more than 4 weeks. Three of six dogs in group 2 had transient mixed chimerism for 3 to 11 weeks, and three have remained stable mixed chimeras for up to 60 weeks now. Four of five dogs in group 3 have remained stable mixed chimeras for 54 to 57 weeks now, while one lost the allograft after 12 weeks. All dogs in groups 4 and 5 rejected their allografts after 2 to 12 weeks. In summary, the establishment of stable mixed hematopoietic chimerism following nonmyelosuppressive and nontoxic conditioning programs has remained a difficult goal. Here we present evidence in a large random-bred animal species that this goal may be achievable with pharmacological immunosuppression postgrafting, capable of inhibiting both host-versus-graft (HVG) and graft-versus-host (GVH) reactions in the setting of DLA-identical grafts.

UI MeSH Term Description Entries
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D009173 Mycophenolic Acid Compound derived from Penicillium stoloniferum and related species. It blocks de novo biosynthesis of purine nucleotides by inhibition of the enzyme inosine monophosphate dehydrogenase (IMP DEHYDROGENASE). Mycophenolic acid exerts selective effects on the immune system in which it prevents the proliferation of T-CELLS, LYMPHOCYTES, and the formation of antibodies from B-CELLS. It may also inhibit recruitment of LEUKOCYTES to sites of INFLAMMATION. Cellcept,Mycophenolate Mofetil,Mycophenolate Mofetil Hydrochloride,Mycophenolate Sodium,Mycophenolic Acid Morpholinoethyl Ester,Myfortic,RS 61443,RS-61443,Sodium Mycophenolate,Mofetil Hydrochloride, Mycophenolate,Mofetil, Mycophenolate,Mycophenolate, Sodium,RS61443
D011828 Radiation Chimera An organism whose body contains cell populations of different genotypes as a result of the TRANSPLANTATION of donor cells after sufficient ionizing radiation to destroy the mature recipient's cells which would otherwise reject the donor cells. Chimera, Radiation,Chimeras, Radiation,Radiation Chimeras
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D006086 Graft vs Host Disease The clinical entity characterized by anorexia, diarrhea, loss of hair, leukopenia, thrombocytopenia, growth retardation, and eventual death brought about by the GRAFT VS HOST REACTION. Graft-Versus-Host Disease,Homologous Wasting Disease,Runt Disease,Graft-vs-Host Disease,Disease, Graft-Versus-Host,Disease, Graft-vs-Host,Disease, Homologous Wasting,Disease, Runt,Diseases, Graft-Versus-Host,Diseases, Graft-vs-Host,Graft Versus Host Disease,Graft-Versus-Host Diseases,Graft-vs-Host Diseases
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006648 Histocompatibility The degree of antigenic similarity between the tissues of different individuals, which determines the acceptance or rejection of allografts. HLA Incompatibility,Histoincompatibility,Human Leukocyte Antigen Incompatibility,Immunocompatibility,Tissue Compatibility,Compatibility, Tissue,HLA Incompatibilities,Histocompatibilities,Histoincompatibilities,Immunocompatibilities,Incompatibility, HLA,Tissue Compatibilities
D006649 Histocompatibility Antigens A group of antigens that includes both the major and minor histocompatibility antigens. The former are genetically determined by the major histocompatibility complex. They determine tissue type for transplantation and cause allograft rejections. The latter are systems of allelic alloantigens that can cause weak transplant rejection. Transplantation Antigens,Antigens, Transplantation,Histocompatibility Antigen,LD Antigens,SD Antigens,Antigen, Histocompatibility,Antigens, Histocompatibility,Antigens, LD,Antigens, SD
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R Storb, and C Yu, and J L Wagner, and H J Deeg, and R A Nash, and H P Kiem, and W Leisenring, and H Shulman
August 2003, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation,
R Storb, and C Yu, and J L Wagner, and H J Deeg, and R A Nash, and H P Kiem, and W Leisenring, and H Shulman
August 1990, Blood,
R Storb, and C Yu, and J L Wagner, and H J Deeg, and R A Nash, and H P Kiem, and W Leisenring, and H Shulman
October 2009, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation,
R Storb, and C Yu, and J L Wagner, and H J Deeg, and R A Nash, and H P Kiem, and W Leisenring, and H Shulman
August 2006, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation,
R Storb, and C Yu, and J L Wagner, and H J Deeg, and R A Nash, and H P Kiem, and W Leisenring, and H Shulman
February 2007, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation,
R Storb, and C Yu, and J L Wagner, and H J Deeg, and R A Nash, and H P Kiem, and W Leisenring, and H Shulman
August 1999, Transplantation,
R Storb, and C Yu, and J L Wagner, and H J Deeg, and R A Nash, and H P Kiem, and W Leisenring, and H Shulman
December 2006, Experimental hematology,
R Storb, and C Yu, and J L Wagner, and H J Deeg, and R A Nash, and H P Kiem, and W Leisenring, and H Shulman
January 2001, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation,
R Storb, and C Yu, and J L Wagner, and H J Deeg, and R A Nash, and H P Kiem, and W Leisenring, and H Shulman
November 1997, Experimental hematology,
R Storb, and C Yu, and J L Wagner, and H J Deeg, and R A Nash, and H P Kiem, and W Leisenring, and H Shulman
October 1982, Transplantation,
Copied contents to your clipboard!