Characterization of the capsular polysaccharide biosynthesis locus of Streptococcus pneumoniae type 19F. 1997

J C Paton, and J K Morona, and R Morona
Molecular Microbiology Unit, Women's and Children's Hospital, North Adelaide, S.A., Australia.

We have used a combination of plasmid insertion/rescue and inverse Polymerase Chain Reaction (PCR) to clone the region of the Streptococcus pneumoniae type 19F chromosome encoding biosynthesis of type 19F capsular polysaccharide (cps19f), which was then subjected to sequence analysis. The cps19f locus is located in the S. pneumoniae chromosome between dexB and aliA, and consists of 15 open reading frames (ORFs), designated cps19fA to cps19fO, that appear to be arranged as a single transcriptional unit. Insertion-duplication mutants in 13 of the 15 ORFs have been constructed in a smooth type 19F strain, all of which resulted in a rough (unencapsulated) phenotype, confirming that the operon is essential for capsule production. Comparison with sequence databases has allowed us to propose functions for 12 of the cps19f gene products, and a biosynthetic pathway for type 19F capsular polysaccharide. Southern hybridization analysis indicated that cps19fA and cps19fB were the only cps genes found in all 16 S. pneumoniae serotypes/groups tested. The region from cps19fG to cps19fK was found only in members of serogroup 19, and within this cps19fI was unique to type 19F.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011135 Polysaccharides, Bacterial Polysaccharides found in bacteria and in capsules thereof. Bacterial Polysaccharides
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013296 Streptococcus pneumoniae A gram-positive organism found in the upper respiratory tract, inflammatory exudates, and various body fluids of normal and/or diseased humans and, rarely, domestic animals. Diplococcus pneumoniae,Pneumococcus
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

J C Paton, and J K Morona, and R Morona
October 1998, Carbohydrate research,
J C Paton, and J K Morona, and R Morona
February 1988, Carbohydrate research,
J C Paton, and J K Morona, and R Morona
October 1998, Journal of bacteriology,
J C Paton, and J K Morona, and R Morona
March 1995, The Journal of experimental medicine,
J C Paton, and J K Morona, and R Morona
June 2009, DNA research : an international journal for rapid publication of reports on genes and genomes,
J C Paton, and J K Morona, and R Morona
January 2000, Research in microbiology,
J C Paton, and J K Morona, and R Morona
January 1982, Microbiology and immunology,
J C Paton, and J K Morona, and R Morona
March 2019, Microbiology spectrum,
Copied contents to your clipboard!