Transcriptional repression of p53 promoter by hepatitis C virus core protein. 1997

R B Ray, and R Steele, and K Meyer, and R Ray
Division of Infectious Diseases and Immunology, Saint Louis University, St. Louis, Missouri 63110, USA.

Our previous results have suggested that the putative core protein of hepatitis C virus (HCV) transcriptionally regulates cellular and viral genes, inhibits cisplatin and c-myc-mediated apoptotic cell death under certain conditions, and transforms primary rat embryo fibroblast cells with a cooperative oncogene. Because HCV appears to cause hepatocellular carcinoma, we evaluated the regulatory role of the HCV core protein on p53, a well known tumor suppressor gene, by an in vitro transfection assay. HCV core protein repressed transcriptional activity of the p53 promoter when tested separately in COS7 and HeLa cells. Deletion mutational analysis of the HCV core gene indicated that the regulatory domain involved in the repression of p53 transcriptional activity is located around amino acid residues 80-122 encompassing a putative DNA binding motif and two major phosphorylation sites. Results from this study suggest that the putative core protein may have an important biological role in the promotion of cell growth by repressing p53 transcription, and this appears to be consistent with certain earlier observations about HCV core moving into the nucleus.

UI MeSH Term Description Entries
D008113 Liver Neoplasms Tumors or cancer of the LIVER. Cancer of Liver,Hepatic Cancer,Liver Cancer,Cancer of the Liver,Cancer, Hepatocellular,Hepatic Neoplasms,Hepatocellular Cancer,Neoplasms, Hepatic,Neoplasms, Liver,Cancer, Hepatic,Cancer, Liver,Cancers, Hepatic,Cancers, Hepatocellular,Cancers, Liver,Hepatic Cancers,Hepatic Neoplasm,Hepatocellular Cancers,Liver Cancers,Liver Neoplasm,Neoplasm, Hepatic,Neoplasm, Liver
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014758 Viral Core Proteins Proteins found mainly in icosahedral DNA and RNA viruses. They consist of proteins directly associated with the nucleic acid inside the NUCLEOCAPSID. Core Proteins, Viral,Major Core Protein,Major Core Proteins, Viral,Adenovirus Core Protein VII,Core Protein V,Core Protein lambda 2,Influenza Virus Core Proteins,Major Core Protein lambda 1,Major Core Protein lambda-1,Major Core Protein sigma 2,Major Core Protein sigma-2,OVP 19,Oncornaviral Protein P19,P30 Core Proteins,Viral Protein P19,Virus Core Proteins,Core Protein, Major,Core Proteins, P30,Core Proteins, Virus,Protein P19, Oncornaviral,Protein P19, Viral,Protein, Major Core,Proteins, P30 Core,Proteins, Viral Core,Proteins, Virus Core
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic

Related Publications

R B Ray, and R Steele, and K Meyer, and R Ray
January 2001, Journal of virology,
R B Ray, and R Steele, and K Meyer, and R Ray
September 2001, The Journal of general virology,
R B Ray, and R Steele, and K Meyer, and R Ray
November 1999, Virology,
R B Ray, and R Steele, and K Meyer, and R Ray
May 2011, Journal of virology,
R B Ray, and R Steele, and K Meyer, and R Ray
February 2003, Biological chemistry,
R B Ray, and R Steele, and K Meyer, and R Ray
November 2000, The Journal of biological chemistry,
R B Ray, and R Steele, and K Meyer, and R Ray
January 2000, Oncogene,
R B Ray, and R Steele, and K Meyer, and R Ray
February 1995, Oncogene,
Copied contents to your clipboard!