Atrial natriuretic peptide (ANP) inhibits its own secretion via ANP(A) receptors: altered effect in experimental hypertension. 1997

H Leskinen, and O Vuolteenaho, and M Toth, and H Ruskoaho
Department of Physiology, University of Oulu, Finland.

Three atrial natriuretic peptide (ANP) receptors, ANP(A), ANP(B), and ANP(C), have been identified in the heart, suggesting that natriuretic peptides may have direct effects on cardiac function. To characterize the possible role of atrial natriuretic peptide (ANP) in the regulation of its own secretion, we studied here the effects of ANP (greater affinity for ANP(A) than for ANP(B) receptors) and C-type natriuretic peptide (CNP), a potent activator of ANP(B) receptors, on the release of atrial peptides under basal conditions and during acute volume expansion in conscious normotensive Sprague-Dawley rats. The effects of HS-142-1, a nonpeptide ANP(A) and ANP(B) receptor antagonist, on volume load-induced atrial peptide release in 1-yr-old conscious normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) were also studied. As an index of secretion of atrial peptides from the heart, plasma levels of N-terminal fragment of pro-ANP (NT-ANP) were measured. In Sprague-Dawley rats, i.v. infusion of ANP for 30 min in doses of 0.3 and 1.0 microg/kg x min blocked the plasma immunoreactive NT-ANP (IR-NT-ANP) response to volume load (P < 0.001), whereas CNP had no significant effect. Neither ANP nor CNP infusion had any effect on plasma IR-NT-ANP levels under basal conditions. Bolus administration of HS-142-1 increased baseline plasma IR-ANP concentrations in both WKY and SHR strains (WKY: 3 mg/kg, 46 +/- 8 pmol/liter, P < 0.001; SHR: 1 mg/kg, 26 +/- 9 pmol/liter, P < 0.01; SHR: 3 mg/kg, 40 +/- 12 pmol/liter, P < 0.01). The corresponding increases in plasma IR-NT-ANP concentrations in the SHR in response to administration of HS-142-1 were 0.17 +/- 0.06 nmol/liter (P < 0.01) and 0.40 +/- 0.14 nmol/liter (P < 0.01). Moreover, HS-142-1 (3 mg/kg) augmented plasma IR-ANP and IR-NT-ANP responses to acute volume load in WKY rats. In contrast, HS-142-1 did not enhance the plasma IR-ANP response to acute volume load in SHR and resulted in a smaller increase in the plasma IR-NT-ANP concentration in SHR than in WKY rats. In conclusion, the findings that ANP, but not CNP, inhibited volume expansion-stimulated NT-ANP release and that HS-142-1, an antagonist of guanylate cyclase-linked natriuretic peptide receptors, increased plasma ANP and NT-ANP concentrations show that endogenous ANP directly modulates its own release via ANP(A) receptors in vivo. Furthermore, this modulation of acute volume expansion-induced atrial peptide release appears to be altered in experimental hypertension.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008297 Male Males
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001810 Blood Volume Volume of circulating BLOOD. It is the sum of the PLASMA VOLUME and ERYTHROCYTE VOLUME. Blood Volumes,Volume, Blood,Volumes, Blood
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic

Related Publications

H Leskinen, and O Vuolteenaho, and M Toth, and H Ruskoaho
January 1989, Polskie Archiwum Medycyny Wewnetrznej,
H Leskinen, and O Vuolteenaho, and M Toth, and H Ruskoaho
January 1989, Life sciences,
H Leskinen, and O Vuolteenaho, and M Toth, and H Ruskoaho
January 2000, International journal of immunopathology and pharmacology,
H Leskinen, and O Vuolteenaho, and M Toth, and H Ruskoaho
May 1992, American journal of hypertension,
H Leskinen, and O Vuolteenaho, and M Toth, and H Ruskoaho
April 1993, Journal of molecular and cellular cardiology,
H Leskinen, and O Vuolteenaho, and M Toth, and H Ruskoaho
October 1992, Clinical nephrology,
H Leskinen, and O Vuolteenaho, and M Toth, and H Ruskoaho
October 1991, Canadian journal of physiology and pharmacology,
H Leskinen, and O Vuolteenaho, and M Toth, and H Ruskoaho
July 1997, The journals of gerontology. Series A, Biological sciences and medical sciences,
H Leskinen, and O Vuolteenaho, and M Toth, and H Ruskoaho
August 1988, The Journal of biological chemistry,
H Leskinen, and O Vuolteenaho, and M Toth, and H Ruskoaho
January 2000, American journal of physiology. Heart and circulatory physiology,
Copied contents to your clipboard!