Role of the Drosophila EGF receptor in determination of the dorsoventral domains of escargot expression during primary neurogenesis. 1997

Y Yagi, and S Hayashi
Genetic Stock Research Centre, National Institute of Genetics, Mishima, Shizuoka-ken, Japan.

BACKGROUND Primary neurogenesis in the central nervous system of insects and vertebrates occurs in three dorsoventral domains in each side of the neuroectoderm. Among the three dorsoventral domains of the Drosophila neuroectoderm, the medial and lateral columns express the zinc-finger gene escargot (esg), whereas the intermediate column does not. We studied esg expression as a probe to investigate the mechanism of neuroectoderm patterning. RESULTS The effect of dorsoventral patterning genes on esg expression was studied. decapentaplegic, snail and twist were found to repress esg expression outside the neuroectoderm. The expression of esg in the intermediate column is normally repressed, but was de-repressed when the EGF receptor homologue (DER) activity was either elevated or reduced. A neurogenic enhancer of esg was identified, and was shown to be separable into a distal region that promotes ubiquitous expression in the neuroectoderm and a proximal region that represses the intermediate expression. CONCLUSIONS decapentaplegic, snail, twist and an activator act through the distal region to initiate transcription of esg in the neuroectoderm. We propose that the combination of opposing gradients of DER and its ligand creates a peak of DER activity in the intermediate column where DER represses esg transcription through the proximal repressor region. These two kinds of regulation establish the early esg expression that prefigures the neuroectoderm patterning.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D001756 Blastoderm A layer of cells lining the fluid-filled cavity (blastocele) of a BLASTULA, usually developed from a fertilized insect, reptilian, or avian egg. Blastoderms
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins

Related Publications

Y Yagi, and S Hayashi
April 1996, Development (Cambridge, England),
Y Yagi, and S Hayashi
June 1989, Genes & development,
Y Yagi, and S Hayashi
June 1999, Development (Cambridge, England),
Y Yagi, and S Hayashi
June 1996, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Y Yagi, and S Hayashi
August 1997, Science (New York, N.Y.),
Copied contents to your clipboard!