Contribution of alpha-adrenoceptors to depolarization and contraction evoked by continuous asynchronous sympathetic nerve activity in rat tail artery. 1997

J A Brock, and E M McLachlan, and S E Rayner
Prince of Wales Medical Research Institute, Randwick, NSW, Australia.

1. The effects of continuous but asynchronous nerve activity induced by ciguatoxin (CTX-1) on the membrane potential and contraction of smooth muscle cells have been investigated in rat proximal tail arteries isolated in vitro. These effects have been compared with those produced by the continuous application of phenylephrine (PE). 2. CTX-1 (0.4 nM) and PE (10 microM) produced a maintained depolarization of the arterial smooth muscle that was almost completely blocked by alpha-adrenoceptor blockade. In both cases, the depolarization was more sensitive to the selective alpha-adrenoceptor antagonist, idazoxan (0.1 microM), than to the selective alpha 1-adrenoceptor antagonist, prazosin (0.01 microM). 3. In contrast, the maintained contraction of the tail artery induced by CTX-1 (0.2 nM) and PE (2 and 10 microM) was more sensitive to prazosin (0.01) microM, than to idazoxan (0.01 microM). In combination, these antagonists almost completely inhibited contraction to both agents. 4. Application of the calcium channel antagonist, nifedipine (1 microM), had no effect on the depolarization induced by either CTX-1 or PE but maximally reduced the force of the maintained contraction to both agents by about 50%. 5. We conclude that the constriction of the tail artery induced by CTX-1, which mimics the natural discharge of postganglionic perivascular axons, is due almost entirely to alpha-adrenoceptor activation. The results indicate that neuronally released noradrenaline activates more than one alpha-adrenoceptor subtype. The depolarization is dependent primarily on alpha 2-adrenoceptor activation whereas the contraction is dependent primarily on alpha 1-adrenoceptor activation. The links between alpha-adrenoceptor activation and the voltage-dependent and voltage-independent mechanisms that deliver Ca2+ to the contractile apparatus appear to be complex.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D010656 Phenylephrine An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent. (R)-3-Hydroxy-alpha-((methylamino)methyl)benzenemethanol,Metaoxedrin,Metasympatol,Mezaton,Neo-Synephrine,Neosynephrine,Phenylephrine Hydrochloride,Phenylephrine Tannate,Neo Synephrine,Tannate, Phenylephrine
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002922 Ciguatoxins Polycyclic ethers produced by Gambierdiscus (DINOFLAGELLATES) from gambiertoxins, which are ingested by fish which in turn may be ingested by humans who are susceptible to the CIGUATERA POISONING. Ciguatoxin
D005260 Female Females
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic

Related Publications

J A Brock, and E M McLachlan, and S E Rayner
February 1985, European journal of pharmacology,
J A Brock, and E M McLachlan, and S E Rayner
January 1985, Clinical and experimental pharmacology & physiology,
J A Brock, and E M McLachlan, and S E Rayner
March 1997, European journal of pharmacology,
J A Brock, and E M McLachlan, and S E Rayner
January 1991, Archives internationales de pharmacodynamie et de therapie,
J A Brock, and E M McLachlan, and S E Rayner
January 2014, Temperature (Austin, Tex.),
J A Brock, and E M McLachlan, and S E Rayner
September 1985, European journal of pharmacology,
J A Brock, and E M McLachlan, and S E Rayner
June 1984, The Journal of pharmacology and experimental therapeutics,
J A Brock, and E M McLachlan, and S E Rayner
January 1985, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
J A Brock, and E M McLachlan, and S E Rayner
January 1992, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!