Absence of prostaglandin E2-induced hyperalgesia in NMDA receptor epsilon subunit knockout mice. 1997

T Minami, and J Sugatani, and K Sakimura, and M Abe, and M Mishina, and S Ito
Department of Anesthesiology, Osaka Medical College, Takatsuki, Japan.

1. We have previously found that intrathecal administration of prostaglandins E2 (PGE2) and D2 (PGD2) into conscious mice induced hyperalgesia by the hot plate test. The present study investigated the involvement of N-methyl-D-aspartate (NMDA) receptor in the prostaglandin-induced hyperalgesia by use of mice tacking NMDA receptor epsilon 1, epsilon 4, or epsilon 1/epsilon 4 subunits. 2. PGE2 induced hyperalgesia over a wide range of doses from 50 pg to 500 ng kg-1 in wild-type mice. But PGE2 could not induce hyperalgesia in epsilon 1, epsilon 4, or epsilon 1/epsilon 4 subunit knockout mice. 3. The NMDA receptor antagonist D-(-)-2-amino-5-phosphonovaleric acid (D-AP5), the non-NMDA receptor antagonist 7-D-glutamylaminomethyl sulphonic acid (GAMS), and the nitric oxide synthase inhibitor N epsilon-nitro-L-arginine methyl ester (L-NAME) inhibited the PGE2-induced hyperalgesia in wild-type mice. 4. PGD2 induced hyperalgesia at doses of 25 ng to 250 ng kg-1 in both wild-type and epsilon 1/epsilon 4 subunit knockout mice. The substance P receptor antagonist OP 96.345 blocked the PGD2-induced hyperalgesia in wild-type and epsilon 1/epsilon 4 subunit knockout mice. 5. These results demonstrate that the pathways leading to hyperalgesia are different between PGD2 and PGE2, and that both epsilon 1 and epsilon 4 subunits of the NMDA receptor are involved in the PGE2-induced hyperalgesia.

UI MeSH Term Description Entries
D007278 Injections, Spinal Introduction of therapeutic agents into the spinal region using a needle and syringe. Injections, Intraspinal,Injections, Intrathecal,Intraspinal Injections,Intrathecal Injections,Spinal Injections,Injection, Intraspinal,Injection, Intrathecal,Injection, Spinal,Intraspinal Injection,Intrathecal Injection,Spinal Injection
D008297 Male Males
D006930 Hyperalgesia An increased sensation of pain or discomfort produced by minimally noxious stimuli due to damage to soft tissue containing NOCICEPTORS or injury to a peripheral nerve. Hyperalgesia, Tactile,Hyperalgesia, Thermal,Hyperalgia,Hyperalgia, Mechanical,Hyperalgia, Primary,Hyperalgia, Secondary,Allodynia,Allodynia, Mechanical,Allodynia, Tactile,Allodynia, Thermal,Hyperalgesia, Mechanical,Hyperalgesia, Primary,Hyperalgesia, Secondary,Hyperalgesic Sensations,Mechanical Allodynia,Mechanical Hyperalgesia,Tactile Allodynia,Thermal Allodynia,Allodynias,Hyperalgesias,Hyperalgesias, Thermal,Hyperalgesic Sensation,Mechanical Hyperalgia,Mechanical Hyperalgias,Primary Hyperalgia,Primary Hyperalgias,Secondary Hyperalgia,Secondary Hyperalgias,Sensation, Hyperalgesic,Sensations, Hyperalgesic,Thermal Hyperalgesia
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015230 Prostaglandin D2 The principal cyclooxygenase metabolite of arachidonic acid. It is released upon activation of mast cells and is also synthesized by alveolar macrophages. Among its many biological actions, the most important are its bronchoconstrictor, platelet-activating-factor-inhibitory, and cytotoxic effects. 11-Dehydroprostaglandin F2alpha,PGD2,11-Dehydroprostaglandin F2 alpha,11 Dehydroprostaglandin F2 alpha,11 Dehydroprostaglandin F2alpha,D2, Prostaglandin,F2 alpha, 11-Dehydroprostaglandin,F2alpha, 11-Dehydroprostaglandin,alpha, 11-Dehydroprostaglandin F2
D015232 Dinoprostone The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa. PGE2,PGE2alpha,Prostaglandin E2,Prostaglandin E2alpha,PGE2 alpha,Prepidil Gel,Prostaglandin E2 alpha,Prostenon,E2 alpha, Prostaglandin,E2, Prostaglandin,E2alpha, Prostaglandin,Gel, Prepidil,alpha, PGE2,alpha, Prostaglandin E2
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018345 Mice, Knockout Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out

Related Publications

T Minami, and J Sugatani, and K Sakimura, and M Abe, and M Mishina, and S Ito
April 1995, Brain research,
T Minami, and J Sugatani, and K Sakimura, and M Abe, and M Mishina, and S Ito
April 2005, Regulatory peptides,
T Minami, and J Sugatani, and K Sakimura, and M Abe, and M Mishina, and S Ito
April 1997, The Journal of physiology,
T Minami, and J Sugatani, and K Sakimura, and M Abe, and M Mishina, and S Ito
June 2000, The Journal of biological chemistry,
T Minami, and J Sugatani, and K Sakimura, and M Abe, and M Mishina, and S Ito
June 2002, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
T Minami, and J Sugatani, and K Sakimura, and M Abe, and M Mishina, and S Ito
April 2002, Bone,
T Minami, and J Sugatani, and K Sakimura, and M Abe, and M Mishina, and S Ito
September 1994, Neuroscience,
T Minami, and J Sugatani, and K Sakimura, and M Abe, and M Mishina, and S Ito
July 2006, Anesthesia and analgesia,
T Minami, and J Sugatani, and K Sakimura, and M Abe, and M Mishina, and S Ito
July 2019, Journal of neurochemistry,
T Minami, and J Sugatani, and K Sakimura, and M Abe, and M Mishina, and S Ito
July 1994, British journal of pharmacology,
Copied contents to your clipboard!