Melatonin agonists induce phosphoinositide hydrolysis in Xenopus laevis melanophores. 1997

U L Mullins, and P B Fernandes, and A S Eison
Bristol-Myers Squibb Company, Wallingford, CT 06492, USA.

Melatonin, the principal hormone of the vertebrate pineal gland, has been implicated in a variety of neurobiological processes such as circadian rhythmicity and reproductive function. One of the earliest described actions of melatonin was its ability to cause pigment translocation in the dermal melanophores of amphibians. Melatonin binding sites have been identified in the brain of many species and in pigmented tumour cell lines; however, the dermal melanophores of the frog Xenopus Laevis possess the highest known density of melatonin binding sites. These cells are the source from which a melatonin receptor has been cloned and provide an excellent model to study melatonin-mediated signal transduction in an isolated cell system. In Xenopus melanophores, melatonin induces a rapid perinuclear aggregation of intracellular pigment which is associated with a pertussis toxin-sensitive inhibition of cAMP. We have previously demonstrated that a subtype of melatonin binding sites found in selected regions of the pigeon brain and in Syrian Hamster RPMI 1846 melatonin cells are functionally coupled to phosphoinositide hydrolysis as a second messenger. Here we now present evidence to suggest that Xenopus Laevis melanophores also possess melatonin binding sites which are functionally linked to phosphoinositide hydrolysis. Melatonin agonists induced phosphoinositide hydrolysis in melanophores in a concentration-dependent manner with a rank order of potency of 2-iodomelatonin > 6-chloromelatonin > N-acetylserotonin > melatonin. Stimulatory response of 2-iodomelatonin was blocked by the melatonin antagonist N-acetyltryptamine and the alpha-adrenergic antagonist prazosin, which has been shown to have high affinity for melatonin binding sites. Phosphoinositide hydrolysis induced by melatonin agonists was not blocked by the serotonin antagonist ketanserin or by phentolamine, an alpha-adrenergic antagonist, indicating that the response observed was not due to stimulation of 5-HT2a/2c receptors or alpha-adrenergic receptors. Furthermore, incubation of melanophores with the non-hydrolyzable G-protein source GTP-gamma-S attenuated the phosphoinositide dose response induced by 2-iodomelatonin, and pre-incubation of the cells with pertussis toxin had no effect on 2-iodomelatonin-induced phosphoinositide hydrolysis. The present data suggest that Xenopus Laevis Melanophores possess G-protein linked pertussis toxin-insensitive melatonin binding sites which are functionally coupled to phosphoinositide hydrolysis as a signal transduction mechanism.

UI MeSH Term Description Entries
D008547 Melanophores Chromatophores (large pigment cells of fish, amphibia, reptiles and many invertebrates) which contain melanin. Short term color changes are brought about by an active redistribution of the melanophores pigment containing organelles (MELANOSOMES). Mammals do not have melanophores; however they have retained smaller pigment cells known as MELANOCYTES. Melanophore
D008550 Melatonin A biogenic amine that is found in animals and plants. In mammals, melatonin is produced by the PINEAL GLAND. Its secretion increases in darkness and decreases during exposure to light. Melatonin is implicated in the regulation of SLEEP, mood, and REPRODUCTION. Melatonin is also an effective antioxidant.
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

U L Mullins, and P B Fernandes, and A S Eison
January 1989, The Journal of endocrinology,
U L Mullins, and P B Fernandes, and A S Eison
December 1991, British journal of pharmacology,
U L Mullins, and P B Fernandes, and A S Eison
December 1992, The Journal of cell biology,
U L Mullins, and P B Fernandes, and A S Eison
March 1992, European journal of pharmacology,
U L Mullins, and P B Fernandes, and A S Eison
March 1999, British journal of pharmacology,
U L Mullins, and P B Fernandes, and A S Eison
January 2014, BioMed research international,
U L Mullins, and P B Fernandes, and A S Eison
January 2015, Photochemistry and photobiology,
U L Mullins, and P B Fernandes, and A S Eison
May 1983, The Journal of experimental zoology,
U L Mullins, and P B Fernandes, and A S Eison
August 2012, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
U L Mullins, and P B Fernandes, and A S Eison
April 2013, Analytical biochemistry,
Copied contents to your clipboard!