Defining a region of the human keratin 6a gene that confers inducible expression in stratified epithelia of transgenic mice. 1997

K Takahashi, and P A Coulombe
Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

Injury to the epidermis and other stratified epithelia triggers a repair response involving the rapid induction of several genes, including keratin 6 (K6). The signaling pathways and mechanisms presiding over this induction in keratinocytes at the wound edge remain to be defined. We reported previously that of the multiple genes encoding K6 isoforms in human, K6a is dominant in skin epithelia (Takahashi, K., Paladini, R., Coulombe, P. A. (1995) J. Biol. Chem. 270, 18581-18592). Using bacterial LacZ as a reporter gene in transgenic mice, we show that the proximal 5.2 kilobases of 5'-upstream sequence from the K6a gene fails to direct sustained expression in any adult tissue, including those where K6 is constitutively expressed (e.g. hair follicle, nail, oral mucosa, tongue, esophagus, forestomach). In contrast, the proximal 960 base pairs of 5'-upstream sequence suffice to mediate an induction of beta-galactosidase expression in a near-correct spatial and temporal fashion after injury to epidermis and other stratified epithelia. Transgene expression also occurs following topical application of phorbol esters, all-trans-retinoic acid, or 2-4-dinitro-1-fluorobenzene, all known to induce K6 expression in skin. Our data show that critical regulatory sequences for this inducibility are located between -960 and -550 bp in the 5'-upstream sequence of K6a and that their activity is influenced by enhancer element(s) located between -2500 and -5200 base pairs. These findings have important implications for the control of gene expression after injury to stratified epithelia.

UI MeSH Term Description Entries
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005799 Genes, Dominant Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state. Conditions, Dominant Genetic,Dominant Genetic Conditions,Genetic Conditions, Dominant,Condition, Dominant Genetic,Dominant Gene,Dominant Genes,Dominant Genetic Condition,Gene, Dominant,Genetic Condition, Dominant
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Takahashi, and P A Coulombe
May 1995, Proceedings of the National Academy of Sciences of the United States of America,
K Takahashi, and P A Coulombe
March 1999, The Journal of investigative dermatology,
K Takahashi, and P A Coulombe
November 2000, Journal of the American Society of Nephrology : JASN,
K Takahashi, and P A Coulombe
August 2003, Journal of the American Society of Nephrology : JASN,
K Takahashi, and P A Coulombe
March 1989, Proceedings of the National Academy of Sciences of the United States of America,
K Takahashi, and P A Coulombe
October 1992, Developmental dynamics : an official publication of the American Association of Anatomists,
Copied contents to your clipboard!