Species differences in NO formation by rat and hamster alveolar macrophages in vitro. 1997

M Dörger, and N K Jesch, and G Rieder, and M R Hirvonen, and K Savolainen, and F Krombach, and K Messmer
Institute for Surgical Research, Klinikum Grosshadern, University of Munich, Germany.

Nitric oxide (NO) is a cellular mediator and regulator of multiple biologic functions. NO released by alveolar macrophages (AM) is suggested to play a role in mediating pulmonary injury. In murine and rat macrophages, the expression of inducible NO synthase (iNOS) and the release of NO are well established. However, the existence of such a pathway in other species remains controversial. In this study, we examined NO production and iNOS expression by AM from rats and hamsters, two laboratory animal species that are characterized by their disparate pulmonary responses to various inhaled irritants/toxicants. AM were treated with lipopolysaccharide (LPS), interferon-gamma (IFN-gamma), or tumor necrosis factor-alpha (TNF-alpha) in vitro, and nitrite, the stable oxidation product of NO, was assayed by the Griess reaction. Rat AM produced NO in a dose- and time-dependent manner upon stimulation with LPS and/or IFN-gamma, but not with TNF-alpha. Surprisingly, hamster AM did not release detectable levels of NO after the same treatment. Although iNOS expression was demonstrated in rat AM by immunocytochemical and Western blot analyses, no induction of iNOS expression could be found in hamster AM. Using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, we found that rat and hamster AM could be induced to express iNOS mRNA after treatment with LPS and IFN-gamma. The results presented here indicate that hamster AM, in contrast to rat AM, lack the ability to express iNOS protein and to generate NO in response to LPS, IFN-gamma, or TNF-alpha in vitro. In conclusion, our data suggest striking differences in iNOS regulation and NO production by AM from rats and hamsters, two rodent species that are commonly used in biomedical research and well-known for their disparate responses to pulmonary irritants/toxicants.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha

Related Publications

M Dörger, and N K Jesch, and G Rieder, and M R Hirvonen, and K Savolainen, and F Krombach, and K Messmer
June 2007, Archives of toxicology,
M Dörger, and N K Jesch, and G Rieder, and M R Hirvonen, and K Savolainen, and F Krombach, and K Messmer
May 1975, Journal of medical microbiology,
M Dörger, and N K Jesch, and G Rieder, and M R Hirvonen, and K Savolainen, and F Krombach, and K Messmer
January 1976, Advances in experimental medicine and biology,
M Dörger, and N K Jesch, and G Rieder, and M R Hirvonen, and K Savolainen, and F Krombach, and K Messmer
March 1980, Journal of the Reticuloendothelial Society,
M Dörger, and N K Jesch, and G Rieder, and M R Hirvonen, and K Savolainen, and F Krombach, and K Messmer
March 2001, Antimicrobial agents and chemotherapy,
M Dörger, and N K Jesch, and G Rieder, and M R Hirvonen, and K Savolainen, and F Krombach, and K Messmer
January 1988, Biochemical and biophysical research communications,
M Dörger, and N K Jesch, and G Rieder, and M R Hirvonen, and K Savolainen, and F Krombach, and K Messmer
November 2000, Human & experimental toxicology,
M Dörger, and N K Jesch, and G Rieder, and M R Hirvonen, and K Savolainen, and F Krombach, and K Messmer
April 1989, Journal of leukocyte biology,
M Dörger, and N K Jesch, and G Rieder, and M R Hirvonen, and K Savolainen, and F Krombach, and K Messmer
April 1986, Environmental research,
M Dörger, and N K Jesch, and G Rieder, and M R Hirvonen, and K Savolainen, and F Krombach, and K Messmer
August 1978, In vitro,
Copied contents to your clipboard!