Identification of ligands selective for central I2-imidazoline binding sites. 1997

A L Hudson, and C B Chapleo, and J W Lewis, and S Husbands, and K Grivas, and N J Mallard, and D J Nutt
Psychopharmacology Unit, School of Medical Sciences, University of Bristol, U.K.

Using radioligand binding techniques, several compounds selective for mammalian brain imidazoline 2 receptors have been identified. In rabbit brain membranes, a series of 6 and/or 7 aromatic-substituted derivatives of the alpha 2-adrenoceptor antagonist idazoxan were found to show moderate affinity for I2 receptors over alpha 2-adrenoceptors, in particular 6,7-dichloroidazoxan, which was 41 fold selective in favour of I2 receptors. Modification of the benzodioxan ring of idazoxan could also result in affinity and selectivity, which was moderate (2.7 nM, 161 fold) in the case of the 1,3-benzodioxan isomer of idazoxan (2-(1,3-benzodioxanyl)-2-imidazoline), and high (1.3 nM, 2873 fold) in the case of 2-(2-benzofuranyl-2-imidazoline) (2-BFI). Analogues of 2-BFI with halogenic substitutions of the aromatic ring were also found to retain high affinity and moderate to high selectivity for I2-sites. In particular, the 7-chloro (Ki 2.8 nM, 2192 fold) and the 4,6-dibromo (Ki 6.1 nM, 361 fold) analogues of 2-BFI. These new ligands should prove invaluable for investigating the pharmacology and physiology of I2 receptors.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008297 Male Males
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005260 Female Females
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic

Related Publications

A L Hudson, and C B Chapleo, and J W Lewis, and S Husbands, and K Grivas, and N J Mallard, and D J Nutt
March 2001, Bioorganic & medicinal chemistry,
A L Hudson, and C B Chapleo, and J W Lewis, and S Husbands, and K Grivas, and N J Mallard, and D J Nutt
August 2008, Journal of medicinal chemistry,
A L Hudson, and C B Chapleo, and J W Lewis, and S Husbands, and K Grivas, and N J Mallard, and D J Nutt
June 1999, Annals of the New York Academy of Sciences,
A L Hudson, and C B Chapleo, and J W Lewis, and S Husbands, and K Grivas, and N J Mallard, and D J Nutt
March 2000, Bioorganic & medicinal chemistry letters,
A L Hudson, and C B Chapleo, and J W Lewis, and S Husbands, and K Grivas, and N J Mallard, and D J Nutt
September 2005, European journal of pharmacology,
A L Hudson, and C B Chapleo, and J W Lewis, and S Husbands, and K Grivas, and N J Mallard, and D J Nutt
April 1995, The Journal of biological chemistry,
A L Hudson, and C B Chapleo, and J W Lewis, and S Husbands, and K Grivas, and N J Mallard, and D J Nutt
January 1997, Naunyn-Schmiedeberg's archives of pharmacology,
A L Hudson, and C B Chapleo, and J W Lewis, and S Husbands, and K Grivas, and N J Mallard, and D J Nutt
March 1998, Naunyn-Schmiedeberg's archives of pharmacology,
A L Hudson, and C B Chapleo, and J W Lewis, and S Husbands, and K Grivas, and N J Mallard, and D J Nutt
September 1994, Naunyn-Schmiedeberg's archives of pharmacology,
A L Hudson, and C B Chapleo, and J W Lewis, and S Husbands, and K Grivas, and N J Mallard, and D J Nutt
January 2013, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
Copied contents to your clipboard!