Agrin: an extracellular matrix heparan sulfate proteoglycan involved in cell interactions and synaptogenesis. 1996

G J Cole, and W Halfter
Neurobiotechnology Center, Ohio State University, Columbus 43210, USA.

Recent studies have documented important roles for heparan sulfate proteoglycans in the control of nervous system development. Agrin is an extracellular matrix protein identified and named based on its involvement in the aggregation of acetylcholine receptors (AChRs) during synaptogenesis at the neuromuscular junction. Recent studies have demonstrated that agrin is a large extracellular heparan sulfate proteoglycan, with a molecular mass in excess of 500 kDa and a protein core of 220 kDa. Emerging evidence indicates that agrin's function is not limited to its role in AChR aggregation during synaptogenesis, as the majority of agrin expression occurs in the developing central nervous system, especially in developing axonal tracts. This review examines recent studies suggesting a role for agrin in the regulation of cell-cell interactions, most notably by its ability to interact with the neural cell adhesion molecule. In addition, other potential roles for the heparan sulfate chains of agrin during nervous system development are explored.

UI MeSH Term Description Entries
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D006497 Heparitin Sulfate A heteropolysaccharide that is similar in structure to HEPARIN. It accumulates in individuals with MUCOPOLYSACCHARIDOSIS. Heparan Sulfate,Sulfate, Heparan,Sulfate, Heparitin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D016326 Extracellular Matrix Proteins Macromolecular organic compounds that contain carbon, hydrogen, oxygen, nitrogen, and usually, sulfur. These macromolecules (proteins) form an intricate meshwork in which cells are embedded to construct tissues. Variations in the relative types of macromolecules and their organization determine the type of extracellular matrix, each adapted to the functional requirements of the tissue. The two main classes of macromolecules that form the extracellular matrix are: glycosaminoglycans, usually linked to proteins (proteoglycans), and fibrous proteins (e.g., COLLAGEN; ELASTIN; FIBRONECTINS; and LAMININ). Extracellular Matrix Protein,Matrix Protein, Extracellular,Matrix Proteins, Extracellular,Protein, Extracellular Matrix,Proteins, Extracellular Matrix
D018171 Agrin A protein component of the synaptic basal lamina. It has been shown to induce clustering of acetylcholine receptors on the surface of muscle fibers and other synaptic molecules in both synapse regeneration and development.
D019812 Heparan Sulfate Proteoglycans Ubiquitous macromolecules associated with the cell surface and extracellular matrix of a wide range of cells of vertebrate and invertebrate tissues. They are essential cofactors in cell-matrix adhesion processes, in cell-cell recognition systems, and in receptor-growth factor interactions. (From Cancer Metastasis Rev 1996; 15(2): 177-86; Hepatology 1996; 24(3): 524-32) HSPG,Heparan Sulfate Proteoglycan,Proteoheparan Sulfate,Proteoglycan, Heparan Sulfate,Proteoglycans, Heparan Sulfate,Sulfate Proteoglycans, Heparan

Related Publications

G J Cole, and W Halfter
June 2008, Developmental neurobiology,
G J Cole, and W Halfter
December 1999, The American journal of pathology,
G J Cole, and W Halfter
September 1981, Proceedings of the National Academy of Sciences of the United States of America,
G J Cole, and W Halfter
September 1994, Experimental cell research,
G J Cole, and W Halfter
January 1998, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
Copied contents to your clipboard!