ADP-regenerating enzyme systems in mitochondria of guinea pig myometrium and heart. 1997

J F Clark, and A V Kuznetsov, and G K Radda
Department of Biochemistry, University of Oxford, United Kingdom.

Any enzyme or enzyme system that produces ADP in proximity to the mitochondria may be capable of stimulating respiration. Hexokinase (HK), adenylate kinase (AK), and mitochondrial creatine kinase (Mi-CK) all catalyze reactions that produce ADP and thus may play a role in cellular nucleotide metabolism or control of mitochondrial oxidative phosphorylation. Respiratory characteristics and enzyme activities of mitochondria simultaneously isolated from heart and uterus of the gravid guinea pig were compared. The abilities of AMP, glucose, and creatine to stimulate mitochondrial respiration via AK, HK, and Mi-CK systems, respectively, were examined. Although the uterine Mi-CK activity is low compared with the values found in heart, the activities of HK and AK were significantly greater. Furthermore, the abilities of HK and AK to stimulate respiration (functional activity) were greater in the uterine mitochondria. Indeed, the activity of AK was sufficient to generate maximal (state 3) respiration. The apparent Michaelis constant (Km) for ADP to stimulate respiration in the isolated uterine mitochondria was significantly different from that of the heart mitochondria (9.6 +/- 0.9 and 5.1 +/- 1 microM ADP, respectively). It is concluded that uterine mitochondria can use HK and AK systems in addition to the CK system in enhancing local ADP concentration, which may aid in the mitochondrial responses to energetic demands.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D009215 Myometrium The smooth muscle coat of the uterus, which forms the main mass of the organ. Uterine Muscle,Muscle, Uterine,Muscles, Uterine,Uterine Muscles
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006593 Hexokinase An enzyme that catalyzes the conversion of ATP and a D-hexose to ADP and a D-hexose 6-phosphate. D-Glucose, D-mannose, D-fructose, sorbitol, and D-glucosamine can act as acceptors; ITP and dATP can act as donors. The liver isoenzyme has sometimes been called glucokinase. (From Enzyme Nomenclature, 1992) EC 2.7.1.1. Hexokinase A,Hexokinase D,Hexokinase II
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000263 Adenylate Kinase An enzyme that catalyzes the phosphorylation of AMP to ADP in the presence of ATP or inorganic triphosphate. EC 2.7.4.3. Myokinase,AMP Kinase,ATP-AMP Phosphotransferase,ATP-AMP Transphosphorylase,Adenylokinase,ATP AMP Phosphotransferase,ATP AMP Transphosphorylase,Kinase, AMP,Kinase, Adenylate,Phosphotransferase, ATP-AMP,Transphosphorylase, ATP-AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J F Clark, and A V Kuznetsov, and G K Radda
May 1975, Canadian journal of biochemistry,
J F Clark, and A V Kuznetsov, and G K Radda
February 1987, The Biochemical journal,
J F Clark, and A V Kuznetsov, and G K Radda
October 1963, Biochemical pharmacology,
J F Clark, and A V Kuznetsov, and G K Radda
March 1974, The Journal of physiology,
J F Clark, and A V Kuznetsov, and G K Radda
January 1990, Comparative biochemistry and physiology. B, Comparative biochemistry,
J F Clark, and A V Kuznetsov, and G K Radda
January 1986, Proceedings of the Western Pharmacology Society,
J F Clark, and A V Kuznetsov, and G K Radda
January 2022, Methods in molecular biology (Clifton, N.J.),
J F Clark, and A V Kuznetsov, and G K Radda
February 1961, The American journal of physiology,
J F Clark, and A V Kuznetsov, and G K Radda
March 1957, The Journal of biological chemistry,
J F Clark, and A V Kuznetsov, and G K Radda
February 2000, Biology of reproduction,
Copied contents to your clipboard!