Mechanisms of alpha2-adrenoceptor-mediated inhibition in rabbit carotid body. 1997

L Almaraz, and M T Pérez-García, and A Gómez-Nino, and C González
Departamento de Bioquímica, Instituto de Biología y Genética Molecular, Facultad de Medicina, Universidad de Valladolid, Spain.

We have used the in vitro preparation of the intact carotid body (CB) and isolated chemoreceptor cells to elucidate the distribution and function of alpha2-adrenoreceptors. The significance of the study lies in the fact that norepinephrine (NE), being the neurotransmitter of the sympathetic innervation to the CB, is also abundant in chemoreceptor cells. In intact CB whose catecholamine (CA) deposits had been labeled by prior incubation with the CA precursor [3H]tyrosine, the alpha2-antagonist yohimbine (10 microM) potentiated the low-PO2 (33 and 60 mmHg)-induced release of [3H]CA by 100 and 53%, respectively. Yohimbine (10 microM) and SKF-86466 (50 microM; another alpha2-antagonist) reversed the inhibition of the release of [3H]CA produced by the alpha2-receptor agonists clonidine and UK-14304 (10 microM). The increase in adenosine 3',5'-cyclic monophosphate produced by low PO2 was further augmented by yohimbine and nearly halved by UK-14304 and clonidine. In isolated chemoreceptor cells, UK-14304 and NE inhibited voltage-dependent Ca2+ currents by 28 and 32%, respectively. These results indicate that alpha2-receptors are present in chemoreceptor cells, where they reduce the release of [3H]CA. Inhibition of adenylate cyclase(s) and Ca2+ channels may be involved in this effect. Using intact CB from normal and chronically sympathectomized animals, we demonstrated a specific accumulation of [3H]NE in intraglomic sympathetic endings. Hypoxia (PO2 approximately 33 mmHg) did not elicit release of [3H]NE from the sympathetic endings, but high extracellular K+ (K+(e)) induced a release of [3H]NE that was inhibited by alpha2-agonists and augmented by alpha2-antagonists. These findings demonstrate that alpha2-receptors are also present in the sympathetic endings of the CB, where they modulate the release of NE. As a whole, this work provides a more detailed understanding of the role of the sympathetic innervation in the control of the CB chemoreceptor function, including the cellular mechanisms of the action of NE.

UI MeSH Term Description Entries
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D002344 Carotid Body A small cluster of chemoreceptive and supporting cells located near the bifurcation of the internal carotid artery. The carotid body, which is richly supplied with fenestrated capillaries, senses the pH, carbon dioxide, and oxygen concentrations in the blood and plays a crucial role in their homeostatic control. Glomus Caroticum,Bodies, Carotid,Body, Carotid,Caroticum, Glomus,Carotid Bodies
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013564 Sympathetic Nervous System The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system. Nervous System, Sympathetic,Nervous Systems, Sympathetic,Sympathetic Nervous Systems,System, Sympathetic Nervous,Systems, Sympathetic Nervous
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

L Almaraz, and M T Pérez-García, and A Gómez-Nino, and C González
March 2001, Japanese journal of pharmacology,
L Almaraz, and M T Pérez-García, and A Gómez-Nino, and C González
January 2001, Naunyn-Schmiedeberg's archives of pharmacology,
L Almaraz, and M T Pérez-García, and A Gómez-Nino, and C González
January 1994, Advances in experimental medicine and biology,
L Almaraz, and M T Pérez-García, and A Gómez-Nino, and C González
September 1999, The American journal of physiology,
L Almaraz, and M T Pérez-García, and A Gómez-Nino, and C González
January 1993, The Journal of physiology,
L Almaraz, and M T Pérez-García, and A Gómez-Nino, and C González
December 1995, Research communications in molecular pathology and pharmacology,
L Almaraz, and M T Pérez-García, and A Gómez-Nino, and C González
September 1997, European journal of pharmacology,
L Almaraz, and M T Pérez-García, and A Gómez-Nino, and C González
August 2002, Fundamental & clinical pharmacology,
L Almaraz, and M T Pérez-García, and A Gómez-Nino, and C González
August 1999, The Tohoku journal of experimental medicine,
L Almaraz, and M T Pérez-García, and A Gómez-Nino, and C González
January 1978, The Journal of physiology,
Copied contents to your clipboard!