Effects of exercise training on glucose transport and cell surface GLUT-4 in isolated rat epitrochlearis muscle. 1997

T H Reynolds, and J T Brozinick, and M A Rogers, and S W Cushman
Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892-1420, USA.

The effects of exercise training on maximal glucose transport activity and cell surface GLUT-4 were examined in rat epitrochlearis muscle. Five days of swim training (2 x 3 h/day) produce a significant increase in citrate synthase activity (24.5 +/- 0.6 vs. 20.1 +/- 0.7 micromol x min(-1) x g(-1)), GLUT-4 content (22.9 +/- 0.8 vs. 17.4 +/- 0.4% GLUT-4 standard), and glycogen levels (54.3 +/- 9.4 vs. 28.6 +/- 9.4 micromol/g). Maximally, insulin-stimulated glucose transport activity and cell surface GLUT-4 are increased by 55 (1.50 +/- 0.11 vs. 0.97 +/- 0.10 micromol x ml(-1) x 20 min(-1)) and 48% [12.0 +/- 0.8 vs. 8.1 +/- 0.9 disintegrations x min(-1) (dpm) x mg(-1)], respectively, in exercise-trained epitrochlearis muscles. In contrast, hypoxia-stimulated glucose transport activity and cell surface GLUT-4 are reduced by 38 (0.78 +/- 0.08 vs.1.25 +/- 0.14 micromol x ml(-1) x 20 min(-1)) and 40% (5.7 +/- 0.9 vs. 9.4 +/- 1.2 dpm/mg), respectively, in exercise-trained epitrochlearis muscles. These results demonstrate that changes in insulin- and hypoxia-stimulated glucose transport activity after exercise training are fully accounted for by the appearance of cell surface GLUT-4 and support the concept of two intracellular pools of GLUT-4. Finally, we propose that high levels of muscle glycogen with exercise training may contribute to the decrease in hypoxia-stimulated glucose transport activity.

UI MeSH Term Description Entries
D008297 Male Males
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D010805 Physical Conditioning, Animal Diet modification and physical exercise to improve the ability of animals to perform physical activities. Animal Physical Conditioning,Animal Physical Conditionings,Conditioning, Animal Physical,Conditionings, Animal Physical,Physical Conditionings, Animal
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005552 Forelimb A front limb of a quadruped. (The Random House College Dictionary, 1980) Forelimbs
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013550 Swimming An activity in which the body is propelled through water by specific movement of the arms and/or the legs. Swimming as propulsion through water by the movement of limbs, tail, or fins of animals is often studied as a form of PHYSICAL EXERTION or endurance.

Related Publications

T H Reynolds, and J T Brozinick, and M A Rogers, and S W Cushman
June 2001, Journal of applied physiology (Bethesda, Md. : 1985),
T H Reynolds, and J T Brozinick, and M A Rogers, and S W Cushman
August 1996, The American journal of physiology,
T H Reynolds, and J T Brozinick, and M A Rogers, and S W Cushman
November 1992, The American journal of physiology,
T H Reynolds, and J T Brozinick, and M A Rogers, and S W Cushman
May 1996, Journal of applied physiology (Bethesda, Md. : 1985),
T H Reynolds, and J T Brozinick, and M A Rogers, and S W Cushman
June 1998, Journal of applied physiology (Bethesda, Md. : 1985),
T H Reynolds, and J T Brozinick, and M A Rogers, and S W Cushman
September 1985, The American journal of physiology,
T H Reynolds, and J T Brozinick, and M A Rogers, and S W Cushman
December 1997, Journal of applied physiology (Bethesda, Md. : 1985),
T H Reynolds, and J T Brozinick, and M A Rogers, and S W Cushman
January 1998, Advances in experimental medicine and biology,
T H Reynolds, and J T Brozinick, and M A Rogers, and S W Cushman
April 1993, The American journal of physiology,
T H Reynolds, and J T Brozinick, and M A Rogers, and S W Cushman
December 1999, The American journal of physiology,
Copied contents to your clipboard!