Air blast-induced pulmonary oxidative stress: interplay among hemoglobin, antioxidants, and lipid peroxidation. 1997

N V Gorbunov, and N M Elsayed, and E R Kisin, and A V Kozlov, and V E Kagan
Department of Respiratory Research, Walter Reed Army Institute of Research, Washington, District of Columbia 20307, USA.

Blast overpressure (BOP) is a phenomenon that describes the instantaneous rise in atmospheric pressure above ambient, resulting from the firing of large caliber weapons or from military or civilian explosions. Exposure to BOP results in injury to the gas-filled organs, such as the lungs, which exhibit a contusion-type injury. We examined the effects of BOP in rats at 5 and 60 min after exposure to a low-level BOP (62 +/- 3 kPa). The exposure was found to cause oxidative stress in the lung that was characterized by 1) a 3.5-fold decrease in total antioxidant reserves, 2) a depletion of the major water-soluble antioxidants ascorbate and glutathione (GSH) by 50 and 75%, respectively, 3) a depletion of lipid-soluble antioxidant vitamin E by 30%, 4) a 2.5-fold increase of fluorescent end products of lipid peroxidation, and 5) an increased methemoglobin (metHb) content at 60 min after exposure. To elucidate the role of released hemoglobin (Hb) in blast-induced oxidative stress, we studied the interactions of oxyhemoglobin (oxyHb), metHb, and the oxoferryl from of Hb free radical species with two physiologically important reductants, ascorbate and GSH. We found that both ascorbate and GSH were able to convert oxyHb to metHb in a reaction that yielded the one-electron oxidation intermediates semidehydroascorbyl radical and glutathionyl radical, respectively. This reaction did not occur under anaerobic conditions, suggesting that oxyHb-bound O2 acted as the electron acceptor. OxyHb induced peroxidation of cis-parinaric acid in the presence but not absence of ascorbate or GSH. Thus the prooxidant action of water-soluble antioxidants via redox cycling of oxyHb and metHb may promote oxidative stress rather than prevent it.

UI MeSH Term Description Entries
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008297 Male Males
D008706 Methemoglobin Ferrihemoglobin
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010108 Oxyhemoglobins A compound formed by the combination of hemoglobin and oxygen. It is a complex in which the oxygen is bound directly to the iron without causing a change from the ferrous to the ferric state. Oxycobalt Hemoglobin,Oxycobalthemoglobin,Oxyhemoglobin,Hemoglobin, Oxycobalt
D001753 Blast Injuries Injuries resulting when a person is struck by particles impelled with violent force from an explosion. Blast causes pulmonary concussion and hemorrhage, laceration of other thoracic and abdominal viscera, ruptured ear drums, and minor effects in the central nervous system. (From Dorland, 27th ed) Injuries, Blast,Blast Injury,Injury, Blast
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous

Related Publications

N V Gorbunov, and N M Elsayed, and E R Kisin, and A V Kozlov, and V E Kagan
January 2014, BioMed research international,
N V Gorbunov, and N M Elsayed, and E R Kisin, and A V Kozlov, and V E Kagan
January 1990, Alcohol and alcoholism (Oxford, Oxfordshire),
N V Gorbunov, and N M Elsayed, and E R Kisin, and A V Kozlov, and V E Kagan
January 2001, Likars'ka sprava,
N V Gorbunov, and N M Elsayed, and E R Kisin, and A V Kozlov, and V E Kagan
August 1973, Federation proceedings,
N V Gorbunov, and N M Elsayed, and E R Kisin, and A V Kozlov, and V E Kagan
August 2011, Journal of medicine and life,
N V Gorbunov, and N M Elsayed, and E R Kisin, and A V Kozlov, and V E Kagan
January 1994, Journal of vascular research,
N V Gorbunov, and N M Elsayed, and E R Kisin, and A V Kozlov, and V E Kagan
January 1987, Birth defects original article series,
N V Gorbunov, and N M Elsayed, and E R Kisin, and A V Kozlov, and V E Kagan
January 2010, Neurotoxicology and teratology,
N V Gorbunov, and N M Elsayed, and E R Kisin, and A V Kozlov, and V E Kagan
December 1987, Environmental research,
N V Gorbunov, and N M Elsayed, and E R Kisin, and A V Kozlov, and V E Kagan
February 2001, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP,
Copied contents to your clipboard!