CRF receptor antagonist attenuates immobilization stress-induced norepinephrine release in the prefrontal cortex in rats. 1997

G N Smagin, and J Zhou, and R B Harris, and D H Ryan
Pennington Biomedical Research Center, Louisiana State University, Baton Rouge 70808, USA.

Neuroanatomical, neurophysiological, and behavioral studies suggest that brain stem nucleus locus coeruleus (LC) plays an important role in stress response. The present study was designed to clarify, whether infusion of CRF antagonist, alpha hCRF, into LC could attenuate or block stress-induced changes in norepinephrine (NE) concentrations in microdialysates collected from the medial prefrontal cortex (PFM). Rats were implanted with a bilateral cannulae assembly aimed in the LC and a microdialysis probe (4 mm active membrane length) into the LC. Immobilization of animals significantly increased the concentration of NE in microdialysates from PFM to a maximum of 170.8 +/- 12.8% of the baseline ten minutes after the onset of stressor. Concentration of NE in dialysates remained significantly elevated for the next 40 min. Infusion of alpha hCRF into the LC significantly attenuated stress-induced increase in PFM NE concentration in samples collected at 10, 20, 30, and 50 min after the onset of immobilization. Infusion of alpha hCRF alone (no immobilization) did not change concentrations at any time during sample collection. These results are consistent with other studies and suggest that stress can facilitate NE release in the PFM through the activation of the CRF system in the brain.

UI MeSH Term Description Entries
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013312 Stress, Physiological The unfavorable effect of environmental factors (stressors) on the physiological functions of an organism. Prolonged unresolved physiological stress can affect HOMEOSTASIS of the organism, and may lead to damaging or pathological conditions. Biotic Stress,Metabolic Stress,Physiological Stress,Abiotic Stress,Abiotic Stress Reaction,Abiotic Stress Response,Biological Stress,Metabolic Stress Response,Physiological Stress Reaction,Physiological Stress Reactivity,Physiological Stress Response,Abiotic Stress Reactions,Abiotic Stress Responses,Abiotic Stresses,Biological Stresses,Biotic Stresses,Metabolic Stress Responses,Metabolic Stresses,Physiological Stress Reactions,Physiological Stress Responses,Physiological Stresses,Reaction, Abiotic Stress,Reactions, Abiotic Stress,Response, Abiotic Stress,Response, Metabolic Stress,Stress Reaction, Physiological,Stress Response, Metabolic,Stress Response, Physiological,Stress, Abiotic,Stress, Biological,Stress, Biotic,Stress, Metabolic
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017397 Prefrontal Cortex The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin. Anterior Prefrontal Cortex,Brodmann Area 10,Brodmann Area 11,Brodmann Area 12,Brodmann Area 47,Brodmann's Area 10,Brodmann's Area 11,Brodmann's Area 12,Brodmann's Area 47,Pars Orbitalis,Frontal Sulcus,Gyrus Frontalis Inferior,Gyrus Frontalis Superior,Gyrus Orbitalis,Gyrus Rectus,Inferior Frontal Gyrus,Lateral Orbitofrontal Cortex,Marginal Gyrus,Medial Frontal Gyrus,Olfactory Sulci,Orbital Area,Orbital Cortex,Orbital Gyri,Orbitofrontal Cortex,Orbitofrontal Gyri,Orbitofrontal Gyrus,Orbitofrontal Region,Rectal Gyrus,Rectus Gyrus,Straight Gyrus,Subcallosal Area,Superior Frontal Convolution,Superior Frontal Gyrus,Ventral Medial Prefrontal Cortex,Ventromedial Prefrontal Cortex,Anterior Prefrontal Cortices,Area 10, Brodmann,Area 10, Brodmann's,Area 11, Brodmann,Area 11, Brodmann's,Area 12, Brodmann,Area 12, Brodmann's,Area 47, Brodmann,Area 47, Brodmann's,Area, Orbital,Area, Subcallosal,Brodmanns Area 10,Brodmanns Area 11,Brodmanns Area 12,Brodmanns Area 47,Convolution, Superior Frontal,Convolutions, Superior Frontal,Cortex, Anterior Prefrontal,Cortex, Lateral Orbitofrontal,Cortex, Orbital,Cortex, Orbitofrontal,Cortex, Prefrontal,Cortex, Ventromedial Prefrontal,Cortices, Ventromedial Prefrontal,Frontal Convolution, Superior,Frontal Gyrus, Inferior,Frontal Gyrus, Medial,Frontal Gyrus, Superior,Frontalis Superior, Gyrus,Gyrus, Inferior Frontal,Gyrus, Marginal,Gyrus, Medial Frontal,Gyrus, Orbital,Gyrus, Orbitofrontal,Gyrus, Rectal,Gyrus, Rectus,Gyrus, Straight,Gyrus, Superior Frontal,Inferior, Gyrus Frontalis,Lateral Orbitofrontal Cortices,Olfactory Sulcus,Orbital Areas,Orbital Cortices,Orbital Gyrus,Orbitalis, Pars,Orbitofrontal Cortex, Lateral,Orbitofrontal Cortices,Orbitofrontal Cortices, Lateral,Orbitofrontal Regions,Prefrontal Cortex, Anterior,Prefrontal Cortex, Ventromedial,Prefrontal Cortices, Anterior,Region, Orbitofrontal,Subcallosal Areas,Sulcus, Frontal,Superior Frontal Convolutions,Superior, Gyrus Frontalis,Ventromedial Prefrontal Cortices
D017551 Microdialysis A technique for measuring extracellular concentrations of substances in tissues, usually in vivo, by means of a small probe equipped with a semipermeable membrane. Substances may also be introduced into the extracellular space through the membrane.
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018019 Receptors, Corticotropin-Releasing Hormone Cell surface proteins that bind corticotropin-releasing hormone with high affinity and trigger intracellular changes which influence the behavior of cells. The corticotropin releasing-hormone receptors on anterior pituitary cells mediate the stimulation of corticotropin release by hypothalamic corticotropin releasing factor. The physiological consequence of activating corticotropin-releasing hormone receptors on central neurons is not well understood. CRH Receptors,Corticotropin Releasing-Factor Receptor,Corticotropin Releasing-Hormone Receptors,Receptors, CRH,CRF Receptor,CRF Receptors,CRH Receptor,Corticotropin Releasing-Factor Receptors,Corticotropin Releasing-Hormone Receptor,Receptors, CRF,Corticotropin Releasing Factor Receptor,Corticotropin Releasing Factor Receptors,Corticotropin Releasing Hormone Receptor,Corticotropin Releasing Hormone Receptors,Corticotropin-Releasing Hormone Receptors,Hormone Receptors, Corticotropin-Releasing,Receptor, CRF,Receptor, CRH,Receptor, Corticotropin Releasing-Factor,Receptor, Corticotropin Releasing-Hormone,Receptors, Corticotropin Releasing Hormone,Receptors, Corticotropin Releasing-Factor,Receptors, Corticotropin Releasing-Hormone,Releasing-Factor Receptor, Corticotropin,Releasing-Factor Receptors, Corticotropin,Releasing-Hormone Receptor, Corticotropin,Releasing-Hormone Receptors, Corticotropin

Related Publications

G N Smagin, and J Zhou, and R B Harris, and D H Ryan
August 1994, Brain research,
G N Smagin, and J Zhou, and R B Harris, and D H Ryan
December 1994, The American journal of physiology,
G N Smagin, and J Zhou, and R B Harris, and D H Ryan
April 1993, Yakubutsu, seishin, kodo = Japanese journal of psychopharmacology,
G N Smagin, and J Zhou, and R B Harris, and D H Ryan
November 1993, Brain research,
G N Smagin, and J Zhou, and R B Harris, and D H Ryan
June 1993, European journal of pharmacology,
G N Smagin, and J Zhou, and R B Harris, and D H Ryan
December 1999, British journal of anaesthesia,
G N Smagin, and J Zhou, and R B Harris, and D H Ryan
February 2008, Alcoholism, clinical and experimental research,
G N Smagin, and J Zhou, and R B Harris, and D H Ryan
May 2000, Stress (Amsterdam, Netherlands),
G N Smagin, and J Zhou, and R B Harris, and D H Ryan
October 1995, Progress in neuro-psychopharmacology & biological psychiatry,
Copied contents to your clipboard!