An impedance matching of femoral-popliteal arterial grafts: a theoretical study. 1997

H Hirayama, and T Nishimura, and Y Fukuyama
Department of Public Health, Asahikawa Medical College, Japan.

We have proposed a mathematical method to investigate the matching conditions for an arterial graft in the femoral-popliteal region from a mechanical stand-point. Pulsatory blood flow, arterial wall motions, and conservation law are expressed by linear dynamical equations based on strict mechanical and constitutional considerations. To express the physiological blood flow in an actual arterial system, the tethering effects from the surrounding tissue and wall tensions were incorporated. The physiological parameters of arterial wall and tethering were utilized from reported experimental data. By complex analysis, mathematical expressions for the local impedance and reflection coefficient were obtained. They include not only blood properties such as viscosity and density, but also arterial properties including elastic modulus, radius, Poisson ratio, wall thickness, wall tension, frequency, and tethering effects from surrounding tissue. A matching condition was defined for minimizing the local impedance and reflection coefficient. The biophysical background was to reduce any mechanical mismatches, thus minimizing the disturbance of the flow velocity profile and shear stress distribution within the artery. Impedance matching in turn diminishes the negative factors for graft substitution represented by intimal hyperplasia and thrombosis. The calculated impedance and reflection coefficient inversed parabolically to functions of the resistance of the host artery, and there was one host arterial resistance that minimized the impedance and reflection coefficient. The present analysis revealed that for matching host artery with an elevated resistance, the dynamic elastic modulus of the wall of the graft that minimizes the impedance and reflection coefficient was increased. This indicates that for a host artery with a high resistance, an impedance matched stiff wall graft is preferable. For a large radius and a compliant host artery on the other hand, a large compliant graft should be linked. The present theoretical matching conditions will prevent anastomotic hyperplasia and thrombosis in graft substitution.

UI MeSH Term Description Entries
D006965 Hyperplasia An increase in the number of cells in a tissue or organ without tumor formation. It differs from HYPERTROPHY, which is an increase in bulk without an increase in the number of cells. Hyperplasias
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010992 Plethysmography, Impedance Recording changes in electrical impedance between electrodes placed on opposite sides of a part of the body, as a measure of volume changes in the path of the current. (Stedman, 25th ed) Rheography,Impedance Plethysmography,Impedance Plethysmographies,Plethysmographies, Impedance,Rheographies
D011150 Popliteal Artery The continuation of the femoral artery coursing through the popliteal fossa; it divides into the anterior and posterior tibial arteries. Arteria Poplitea,Artery, Popliteal,Popliteal Arteries
D011673 Pulsatile Flow Rhythmic, intermittent propagation of a fluid through a BLOOD VESSEL or piping system, in contrast to constant, smooth propagation, which produces laminar flow. Flow, Pulsating,Perfusion, Pulsatile,Flow, Pulsatile,Flows, Pulsatile,Flows, Pulsating,Perfusions, Pulsatile,Pulsatile Flows,Pulsatile Perfusion,Pulsatile Perfusions,Pulsating Flow,Pulsating Flows
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001807 Blood Vessel Prosthesis Device constructed of either synthetic or biological material that is used for the repair of injured or diseased blood vessels. Vascular Prosthesis,Blood Vessel Prostheses,Tissue-Engineered Vascular Graft,Graft, Tissue-Engineered Vascular,Grafts, Tissue-Engineered Vascular,Prostheses, Blood Vessel,Prostheses, Vascular,Prosthesis, Blood Vessel,Prosthesis, Vascular,Tissue Engineered Vascular Graft,Tissue-Engineered Vascular Grafts,Vascular Graft, Tissue-Engineered,Vascular Grafts, Tissue-Engineered,Vascular Prostheses,Vessel Prostheses, Blood,Vessel Prosthesis, Blood
D005263 Femoral Artery The main artery of the thigh, a continuation of the external iliac artery. Common Femoral Artery,Arteries, Common Femoral,Arteries, Femoral,Artery, Common Femoral,Artery, Femoral,Common Femoral Arteries,Femoral Arteries,Femoral Arteries, Common,Femoral Artery, Common
D013927 Thrombosis Formation and development of a thrombus or blood clot in BLOOD VESSELS. Atherothrombosis,Thrombus,Blood Clot,Blood Clots,Thromboses

Related Publications

H Hirayama, and T Nishimura, and Y Fukuyama
June 1960, Surgery, gynecology & obstetrics,
H Hirayama, and T Nishimura, and Y Fukuyama
January 1993, Journal of biomechanics,
H Hirayama, and T Nishimura, and Y Fukuyama
June 1981, The New England journal of medicine,
H Hirayama, and T Nishimura, and Y Fukuyama
December 2006, American journal of surgery,
H Hirayama, and T Nishimura, and Y Fukuyama
January 1973, The Journal of cardiovascular surgery,
H Hirayama, and T Nishimura, and Y Fukuyama
January 1972, Angiologia,
H Hirayama, and T Nishimura, and Y Fukuyama
December 1968, Annals of surgery,
H Hirayama, and T Nishimura, and Y Fukuyama
March 2000, Journal of vascular surgery,
H Hirayama, and T Nishimura, and Y Fukuyama
April 2020, Interventional cardiology clinics,
H Hirayama, and T Nishimura, and Y Fukuyama
July 1961, Annals of surgery,
Copied contents to your clipboard!