c-Myb-dependent cell cycle progression and Ca2+ storage in cultured vascular smooth muscle cells. 1997

M Husain, and K Bein, and L Jiang, and S L Alper, and M Simons, and R D Rosenberg
Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.

Considerable controversy surrounds the role of the c-myb proto-oncogene in vascular smooth muscle cells (VSMCs). Previous investigations using antisense approaches have suggested a relationship between c-myb expression, cell cycle progression, and cytoplasmic Ca2+ concentration ([Ca2+]cyt). However, the ability of certain antisense oligonucleotides to bind and inactivate growth factors allows alternative explanations. To define more specifically the role of c-Myb in cultured VSMCs (SVE and A10 cell lines), we have generated stable cell clones expressing a dominant-negative c-Myb lacking critical elements of the DNA binding domain (delta5-SVE) and transiently transfected cell populations (GRE-MEn-SVE and GRE-MEn-A10) expressing a glucocorticoid-inducible chimeric protein that targets the Drosophila Engrailed repressor domain to c-Myb-responsive promoters. The delta5-SVE clones and GRE-MEn cell populations exhibit a 60% reduction in mean intracellular c-Myb activity, as measured by cotransfection assays with a c-Myb-responsive reporter, a 42% decrease in the mean S phase entry of growth-arrested (G[0]) cells after serum stimulation, and a 36% inhibition of mean cell proliferation over 4 days. These cells also display 28% (34-nmol/L) and 30% (42-nmol/L) reductions in mean [Ca2+]cyt at G(0) and at the G1/S interface, respectively, as well as significant reductions in the peak [Ca2+]cyt responses to thapsigargin (5 micromol/L) and caffeine (10 mmol/L). These latter reductions in operationally defined Ca2+ pools were observed both at different stages of the cell cycle and after transient induction of the dominant-interfering construct, suggesting that c-Myb regulates these releasable Ca2+ stores independent of its effects on cell cycle progression.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003587 Cytomegalovirus A genus of the family HERPESVIRIDAE, subfamily BETAHERPESVIRINAE, infecting the salivary glands, liver, spleen, lungs, eyes, and other organs, in which they produce characteristically enlarged cells with intranuclear inclusions. Infection with Cytomegalovirus is also seen as an opportunistic infection in AIDS. Herpesvirus 5, Human,Human Herpesvirus 5,Salivary Gland Viruses,HHV 5,Herpesvirus 5 (beta), Human,Cytomegaloviruses,Salivary Gland Virus,Virus, Salivary Gland,Viruses, Salivary Gland
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D003627 Data Interpretation, Statistical Application of statistical procedures to analyze specific observed or assumed facts from a particular study. Data Analysis, Statistical,Data Interpretations, Statistical,Interpretation, Statistical Data,Statistical Data Analysis,Statistical Data Interpretation,Analyses, Statistical Data,Analysis, Statistical Data,Data Analyses, Statistical,Interpretations, Statistical Data,Statistical Data Analyses,Statistical Data Interpretations

Related Publications

M Husain, and K Bein, and L Jiang, and S L Alper, and M Simons, and R D Rosenberg
March 2008, Circulation research,
M Husain, and K Bein, and L Jiang, and S L Alper, and M Simons, and R D Rosenberg
March 1998, European journal of pharmacology,
M Husain, and K Bein, and L Jiang, and S L Alper, and M Simons, and R D Rosenberg
July 1995, The Biochemical journal,
M Husain, and K Bein, and L Jiang, and S L Alper, and M Simons, and R D Rosenberg
March 1988, Circulation research,
M Husain, and K Bein, and L Jiang, and S L Alper, and M Simons, and R D Rosenberg
May 2006, Circulation research,
M Husain, and K Bein, and L Jiang, and S L Alper, and M Simons, and R D Rosenberg
January 1996, Methods in molecular medicine,
M Husain, and K Bein, and L Jiang, and S L Alper, and M Simons, and R D Rosenberg
March 1986, The Journal of general physiology,
M Husain, and K Bein, and L Jiang, and S L Alper, and M Simons, and R D Rosenberg
June 2007, Arteriosclerosis, thrombosis, and vascular biology,
M Husain, and K Bein, and L Jiang, and S L Alper, and M Simons, and R D Rosenberg
April 1995, The American journal of physiology,
M Husain, and K Bein, and L Jiang, and S L Alper, and M Simons, and R D Rosenberg
March 2000, American journal of physiology. Heart and circulatory physiology,
Copied contents to your clipboard!