Skeletal muscle-specific myosin binding protein-H is expressed in Purkinje fibers of the cardiac conduction system. 1997

T Alyonycheva, and L Cohen-Gould, and C Siewert, and D A Fischman, and T Mikawa
Department of Cell Biology and Anatomy, Cornell University Medical College, New York, NY 10021, USA.

Heart contraction is coordinated by conduction of electrical excitation through specialized tissues of the cardiac conduction system. By retroviral single-cell tagging and lineage analyses in the embryonic chicken heart, we have recently demonstrated that a subset of cardiac muscle cells terminally differentiates as cells of the peripheral conduction system (Purkinje fibers) and that this occurs invariably in perivascular regions of developing coronary arteries. Cis regulatory elements that function in transcriptional regulation of cells in the conducting system have been distinguished from those in contractile cardiac muscle cells; eg, 5' regulatory sequences of the desmin gene act as enhancer elements in skeletal muscle and in the conduction system but not in cardiac muscle. We hypothesize that Purkinje fiber differentiation involves a switch of the gene expression program from that characteristic of cardiac muscle to one typical of skeletal muscle. To test this hypothesis, we examined the expression of myosin binding protein-H (MyBP-H) in Purkinje fibers of chicken hearts. This unique myosin binding protein is present in skeletal but not cardiac myocytes. A site-directed polyclonal antibody (AB105) was generated against MyBP-H. Immunohistological analysis of the myocardium mapped the AB105 antigen predominantly to A bands of myofibrils within Purkinje fibers. Western blot analysis of whole extracts from the ventricular wall of adult chicken hearts revealed that the AB105 epitope was restricted to a single protein of approximately 86 kD, the same size as MyBP-H in skeletal muscle. Biochemical properties of the Purkinje fiber 86-kD protein and RNase protection analyses of its mRNA indicate that Purkinje fiber 86-kD protein is indistinguishable from skeletal muscle MyBP-H. The results provide evidence that skeletal muscle MyBP-H is expressed in a subset of cardiac muscle cells that differentiate into Purkinje fibers of the heart.

UI MeSH Term Description Entries
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D011690 Purkinje Fibers Modified cardiac muscle fibers composing the terminal portion of the heart conduction system. Purkinje Fiber,Fiber, Purkinje,Fibers, Purkinje
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002847 Chromatography, Agarose A method of gel filtration chromatography using agarose, the non-ionic component of agar, for the separation of compounds with molecular weights up to several million. Chromatography, Sepharose,Agarose Chromatography,Sepharose Chromatography,Agarose Chromatographies,Chromatographies, Agarose,Chromatographies, Sepharose,Sepharose Chromatographies
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction

Related Publications

T Alyonycheva, and L Cohen-Gould, and C Siewert, and D A Fischman, and T Mikawa
March 2011, Journal of muscle research and cell motility,
T Alyonycheva, and L Cohen-Gould, and C Siewert, and D A Fischman, and T Mikawa
November 2007, American journal of physiology. Cell physiology,
T Alyonycheva, and L Cohen-Gould, and C Siewert, and D A Fischman, and T Mikawa
April 1995, Biophysical journal,
T Alyonycheva, and L Cohen-Gould, and C Siewert, and D A Fischman, and T Mikawa
August 2022, Journal of molecular and cellular cardiology,
T Alyonycheva, and L Cohen-Gould, and C Siewert, and D A Fischman, and T Mikawa
May 1995, Development (Cambridge, England),
T Alyonycheva, and L Cohen-Gould, and C Siewert, and D A Fischman, and T Mikawa
May 2012, Journal of muscle research and cell motility,
T Alyonycheva, and L Cohen-Gould, and C Siewert, and D A Fischman, and T Mikawa
January 2014, Biochimica et biophysica acta,
T Alyonycheva, and L Cohen-Gould, and C Siewert, and D A Fischman, and T Mikawa
January 1980, Histochemistry,
T Alyonycheva, and L Cohen-Gould, and C Siewert, and D A Fischman, and T Mikawa
June 1961, Japanese circulation journal,
T Alyonycheva, and L Cohen-Gould, and C Siewert, and D A Fischman, and T Mikawa
February 2001, The Journal of biological chemistry,
Copied contents to your clipboard!