Nitric oxide inhibits the secretion of T-helper 1- and T-helper 2-associated cytokines in activated human T cells. 1997

H Bauer, and T Jung, and D Tsikas, and D O Stichtenoth, and J C Frölich, and C Neumann
Department of Dermatology, Göttingen University, Germany.

Mechanisms regulating the balance of T-helper 1 (Th1) and T-helper 2 (Th2) immune responses are of great interest as they may determine the outcome of allergic and infectious diseases. Recently, in mice, nitric oxide (NO), a powerful modulator of inflammation, has been reported to preferentially down-regulate Th1-mediated immune responses. In the present study, we investigated the effect of NO on the production of Th1- and Th2-associated cytokines by activated human T cells and human T-cell clones. Cytokine secretion was measured in the presence of the NO-donating agents 3-morpholinosydnonimine (SIN-1) and S-nitroso-N-acetylpenicillamine (SNAP). Both NO-donors markedly inhibited the release of interferon-gamma (IFN-gamma), interleukin-2 (IL-2), IL-5, IL-10 and IL-4 by anti-CD3 activated T cells. A preferential inhibition of Th1-associated cytokines was not observed. Neither was nitrite found in the supernatants of activated T cells, nor was specific mRNA for inducible and constitutive NO synthase detectable, indicating that T cells themselves did not contribute to the observed effect of the NO donors. Costimulation with anti-CD28 monoclonal antibodies (mAb) prevented SIN-1/SNAP-mediated down-regulation of cytokine production only in part. In contrast, when T cells were stimulated by phorbol-ester and ionomycin, they were refractory to SIN-1-induced inhibition of cytokine production. When SIN-1 was added after the onset of anti-CD3 stimulation, the inhibitory effect was found to be less pronounced, indicating that SIN-1 may interfere with early signal transduction events. The addition of superoxide dismutase (SOD) and catalase did not restore the effects of SIN-1, demonstrating that the inhibition of cytokines was due to NO and not to oxygen intermediates. Furthermore, 8-Br-cGMP-mediated increase of intracellular cGMP caused the same pattern of cytokine inhibition as observed with SIN-1 and SNAP. Using a single cell assay, these agents were shown to reduce the frequency of IFN-gamma-producing T cells, suggesting that not all T cells are susceptible to SIN-1/SNAP. However, cytokine production by purified T-cell subpopulations (CD4+, CD8+, CD45RA+, and CD45RO+) was equally impaired by NO donors. In conclusion, in contrast to the murine system, our results do not provide evidence that NO preferentially inhibits Th1-cytokine secretion of activated human T cells in vitro.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008981 Molsidomine A morpholinyl sydnone imine ethyl ester, having a nitrogen in place of the keto oxygen. It acts as NITRIC OXIDE DONORS and is a vasodilator that has been used in ANGINA PECTORIS. Morsydomine,Corpea,Corvaton,Duracoron,Fali-Cor,Korvatone,MTW-Molsidomin,Molsi 1A Pharma,Molsi-AZU,Molsi-Puren,Molsibeta,Molsicor,Molsidain,Molsidomin,Molsidomin Heumann,Molsidomin Stada,Molsidomin Von Ct,Molsidomin-Ratiopharm,Molsihexal,Molsiket,SIN-10,Sydnopharm,Fali Cor,Heumann, Molsidomin,MTW Molsidomin,Molsi AZU,Molsi Puren,Molsidomin Ratiopharm,SIN 10,SIN10,Von Ct, Molsidomin
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D010396 Penicillamine 3-Mercapto-D-valine. The most characteristic degradation product of the penicillin antibiotics. It is used as an antirheumatic and as a chelating agent in Wilson's disease. Dimethylcysteine,Mercaptovaline,beta,beta-Dimethylcysteine,Copper Penicillaminate,Cuprenil,Cuprimine,D-3-Mercaptovaline,D-Penicillamine,Metalcaptase,D 3 Mercaptovaline,D Penicillamine,Penicillaminate, Copper,beta,beta Dimethylcysteine
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine
D017252 CD3 Complex Complex of at least five membrane-bound polypeptides in mature T-lymphocytes that are non-covalently associated with one another and with the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL). The CD3 complex includes the gamma, delta, epsilon, zeta, and eta chains (subunits). When antigen binds to the T-cell receptor, the CD3 complex transduces the activating signals to the cytoplasm of the T-cell. The CD3 gamma and delta chains (subunits) are separate from and not related to the gamma/delta chains of the T-cell receptor (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA). Antigens, CD3,CD3 Antigens,T3 Antigens,CD3 Antigen,T3 Antigen,T3 Complex,Antigen, CD3,Antigen, T3,Antigens, T3
D018417 Th1 Cells A subset of helper-inducer T-lymphocytes which synthesize and secrete INTERLEUKIN-2; INTERFERON-GAMMA; and INTERLEUKIN-12. Due to their ability to kill antigen-presenting cells and their lymphokine-mediated effector activity, Th1 cells are associated with vigorous delayed-type hypersensitivity reactions. T Helper 1 Cells,TH-1 Cells,Type 1 Helper T Cells,Cell, TH-1,Cell, Th1,Cells, TH-1,Cells, Th1,TH 1 Cells,TH-1 Cell,Th1 Cell

Related Publications

H Bauer, and T Jung, and D Tsikas, and D O Stichtenoth, and J C Frölich, and C Neumann
May 1999, Cellular immunology,
H Bauer, and T Jung, and D Tsikas, and D O Stichtenoth, and J C Frölich, and C Neumann
October 2000, Gynecological endocrinology : the official journal of the International Society of Gynecological Endocrinology,
H Bauer, and T Jung, and D Tsikas, and D O Stichtenoth, and J C Frölich, and C Neumann
January 2000, Cellular immunology,
H Bauer, and T Jung, and D Tsikas, and D O Stichtenoth, and J C Frölich, and C Neumann
January 1995, Microbiology and immunology,
H Bauer, and T Jung, and D Tsikas, and D O Stichtenoth, and J C Frölich, and C Neumann
April 1994, European journal of immunology,
H Bauer, and T Jung, and D Tsikas, and D O Stichtenoth, and J C Frölich, and C Neumann
February 1997, Journal of immunology (Baltimore, Md. : 1950),
H Bauer, and T Jung, and D Tsikas, and D O Stichtenoth, and J C Frölich, and C Neumann
November 2012, Journal of clinical & cellular immunology,
H Bauer, and T Jung, and D Tsikas, and D O Stichtenoth, and J C Frölich, and C Neumann
March 2008, The British journal of dermatology,
H Bauer, and T Jung, and D Tsikas, and D O Stichtenoth, and J C Frölich, and C Neumann
September 2002, Veterinary immunology and immunopathology,
H Bauer, and T Jung, and D Tsikas, and D O Stichtenoth, and J C Frölich, and C Neumann
December 2011, Journal of medicinal food,
Copied contents to your clipboard!