Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs. 1997

Y Iwao, and K Yasumitsu, and M Narihira, and J Jiang, and Y Nagahama
Department of Biological Science, Faculty of Science, Yamaguchi University, Japan.

The unfertilized egg of the newt, Cynops pyrrhogaster, has a second meiotic spindle at the animal pole and numerous cortical cytasters. After physiologically polyspermic fertilization, all sperm nuclei incorporated into the egg develop sperm asters, and the cortical cytasters change into bundles of cortical microtubules. The size of the sperm asters in the animal hemisphere is approximately 5.6-fold larger than that in the vegetal hemisphere. Only one sperm nucleus moves toward the center of the animal hemisphere to form a zygote nucleus with the egg nucleus. This movement is inhibited by nocodazole, but not by cytochalasin B. The centrosome in the zygote nucleus divides into two parts to form a bipolar spindle for the first cleavage synchronously with the nuclear cycle, but centrosomes of accessory sperm nuclei in the vegetal hemisphere remained to form monopolar interphase asters and subsequently degenerate around the first cleavage stage. The size of sperm asters in monospermically fertilized Xenopus eggs was approximately 37-fold larger than those in Cynops eggs. Since sperm asters that formed in polyspermically fertilized Xenopus eggs exclude each other, the formation of a zygote nucleus is inhibited. Cynops sperm nuclei form larger asters in Xenopus eggs, whereas Xenopus sperm nuclei form smaller asters in Cynops eggs compared with those in homologous eggs. Since there was no significant difference in the concentration of monomeric tubulin between those eggs, the size of sperm asters is probably regulated by a component(s) in egg cytoplasm. Smaller asters in physiologically polyspermic newt eggs might be useful for selecting only one sperm nucleus to move toward the egg nucleus.

UI MeSH Term Description Entries
D008297 Male Males
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D008941 Spindle Apparatus A microtubule structure that forms during CELL DIVISION. It consists of two SPINDLE POLES, and sets of MICROTUBULES that may include the astral microtubules, the polar microtubules, and the kinetochore microtubules. Mitotic Apparatus,Mitotic Spindle Apparatus,Spindle Apparatus, Mitotic,Meiotic Spindle,Meiotic Spindle Apparatus,Mitotic Spindle,Apparatus, Meiotic Spindle,Apparatus, Mitotic,Apparatus, Mitotic Spindle,Apparatus, Spindle,Meiotic Spindles,Mitotic Spindles,Spindle Apparatus, Meiotic,Spindle, Meiotic,Spindle, Mitotic,Spindles, Meiotic,Spindles, Mitotic
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D005260 Female Females
D005306 Fertilization The fusion of a spermatozoon (SPERMATOZOA) with an OVUM thus resulting in the formation of a ZYGOTE. Conception,Fertilization, Delayed,Fertilization, Polyspermic,Conceptions,Delayed Fertilization,Delayed Fertilizations,Fertilizations,Fertilizations, Delayed,Fertilizations, Polyspermic,Polyspermic Fertilization,Polyspermic Fertilizations

Related Publications

Y Iwao, and K Yasumitsu, and M Narihira, and J Jiang, and Y Nagahama
December 2002, Development, growth & differentiation,
Y Iwao, and K Yasumitsu, and M Narihira, and J Jiang, and Y Nagahama
December 1990, Developmental biology,
Y Iwao, and K Yasumitsu, and M Narihira, and J Jiang, and Y Nagahama
January 2014, The International journal of developmental biology,
Y Iwao, and K Yasumitsu, and M Narihira, and J Jiang, and Y Nagahama
November 1993, Developmental biology,
Y Iwao, and K Yasumitsu, and M Narihira, and J Jiang, and Y Nagahama
January 1972, Rivista di biologia,
Y Iwao, and K Yasumitsu, and M Narihira, and J Jiang, and Y Nagahama
May 1985, European journal of cell biology,
Y Iwao, and K Yasumitsu, and M Narihira, and J Jiang, and Y Nagahama
February 1985, Journal of embryology and experimental morphology,
Y Iwao, and K Yasumitsu, and M Narihira, and J Jiang, and Y Nagahama
September 1998, European journal of cell biology,
Y Iwao, and K Yasumitsu, and M Narihira, and J Jiang, and Y Nagahama
July 1981, Journal of reproduction and fertility,
Y Iwao, and K Yasumitsu, and M Narihira, and J Jiang, and Y Nagahama
March 1975, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!