Mitochondrial membrane potential measurement in rat cerebellar neurons by flow cytometry. 1997

F X Sureda, and E Escubedo, and C Gabriel, and J Comas, and J Camarasa, and A Camins
Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Nucli Universitari de Pedralbes, Barcelona, Spain.

Mitochondrial membrane potential (MMP) in dissociated rat cerebellar neurons was measured using rhodamine 123 (Rh 123) as fluorescent dye, and flow cytometry. Dye distribution was studied by confocal scanning microscopy. Propidium iodide (PI)-marked cells (dead cells) were not stained by Rh 123, while the green fluorescence of living cells was restricted to mitochondria. Incubation of cells with different ionophores resulted in a maximal inhibition of Rh 123 fluorescence of 27.0 +/- 5.9% (valinomycin), 55.6 +/- 7.2% (ionomycin), and 37.3 +/- 5.1% (gramicidin). Ionophores decreased cell viability at high concentrations, measured as the number of propidium iodide-marked cells. Exposure of cell suspensions to the mitochondrial specific uncoupling agent CCCP caused a decrease in Rh 123 fluorescence (40 +/- 6.1%). Conversely, oxidative stress induced by H2O2 did not affect Rh 123 fluorescence. Impairment of glucose bioavailability reduced Rh 123 fluorescence. 2-Deoxy-D-glucose decreased the MMP with a maximal inhibition of 24.0 +/- 4.4%. Lack of glucose in the incubation medium also resulted in a decrease in MMP. Moreover, application of L-glutamate and N-methyl-D-aspartate (NMDA) (the excitatory amino acids) decreased Rh 123 uptake in a dose-dependent manner, which suggests that the measurement of MMP in dissociated cerebellar neurons by flow cytometry is a suitable method to detect the activity of drugs acting on glutamate receptors.

UI MeSH Term Description Entries
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002258 Carbonyl Cyanide m-Chlorophenyl Hydrazone A proton ionophore. It is commonly used as an uncoupling agent and inhibitor of photosynthesis because of its effects on mitochondrial and chloroplast membranes. CCCP,Carbonyl Cyanide meta-Chlorophenyl Hydrazone,Carbonylcyanide 4-Chlorophenylhydrazone,Propanedinitrile, ((3-chlorophenyl)hydrazono)-,Carbonyl Cyanide m Chlorophenyl Hydrazone,4-Chlorophenylhydrazone, Carbonylcyanide,Carbonyl Cyanide meta Chlorophenyl Hydrazone,Carbonylcyanide 4 Chlorophenylhydrazone
D002525 Cerebellar Cortex The superficial GRAY MATTER of the CEREBELLUM. It consists of two main layers, the stratum moleculare and the stratum granulosum. Cortex Cerebelli,Cerebelli, Cortex,Cerebellus, Cortex,Cortex Cerebellus,Cortex, Cerebellar
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic

Related Publications

F X Sureda, and E Escubedo, and C Gabriel, and J Comas, and J Camarasa, and A Camins
December 2019, Journal of visualized experiments : JoVE,
F X Sureda, and E Escubedo, and C Gabriel, and J Comas, and J Camarasa, and A Camins
August 2005, Electrophoresis,
F X Sureda, and E Escubedo, and C Gabriel, and J Comas, and J Camarasa, and A Camins
December 2001, Microbiology (Reading, England),
F X Sureda, and E Escubedo, and C Gabriel, and J Comas, and J Camarasa, and A Camins
July 2000, Methods (San Diego, Calif.),
F X Sureda, and E Escubedo, and C Gabriel, and J Comas, and J Camarasa, and A Camins
March 1982, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
F X Sureda, and E Escubedo, and C Gabriel, and J Comas, and J Camarasa, and A Camins
September 1998, Biochimica et biophysica acta,
F X Sureda, and E Escubedo, and C Gabriel, and J Comas, and J Camarasa, and A Camins
May 2004, Current protocols in cytometry,
F X Sureda, and E Escubedo, and C Gabriel, and J Comas, and J Camarasa, and A Camins
January 2022, Methods in molecular biology (Clifton, N.J.),
F X Sureda, and E Escubedo, and C Gabriel, and J Comas, and J Camarasa, and A Camins
February 2008, Zhonghua nan ke xue = National journal of andrology,
F X Sureda, and E Escubedo, and C Gabriel, and J Comas, and J Camarasa, and A Camins
July 2017, Reactive oxygen species (Apex, N.C.),
Copied contents to your clipboard!