Short-lived intermediates in aspartate aminotransferase systems. 1997

G Czerlinski, and R Levin, and T Ypma
Department of Biology, Western Washington University, Bellingham 98225, USA. ghc@henson.cc.wwu.edu

The kinetics of the reaction of aspartate aminotransferase with erythro-beta-hydroxy-aspartate, in which rapid mixing is followed (upon reaching a suitable stationary state) by a very fast temperature jump, is numerically simulated. Values for rate constants are used to the extent known, otherwise estimated. It is shown that reaction steps not resolvable by rapid mixing can be resolved by subsequent chemical relaxation. Since several absorption spectra of enzyme complexes overlap, use of a pH-indicator is investigated. When the pH-indicator is coupled to the protonic dissociation of free enzyme, the fast steps are easily detected in the chemical relaxation portion of the simulation. When the pH-indicator is coupled to the protonic dissociation of the (short-lived) quinoid intermediate, protonic dissociation is easily detectable in the stopped flow phase and in the chemical relaxation phase. Such transient protonic dissociation has not been detected experimentally, but is predicted by the simulation. When natural substrates are used, the magnitude of the rate constants makes it unlikely that transient proton dissociation can be detected by stopped flow alone, but a combination of stopped flow with very fast temperature perturbation allows detection of the transient proton through use of a suitable nonbinding pH-indicator. This is demonstrated by simulation for a specific case. Finally, an alternate mechanism is introduced and distinction of its kinetics from that of the original mechanism is demonstrated.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001219 Aspartate Aminotransferases Enzymes of the transferase class that catalyze the conversion of L-aspartate and 2-ketoglutarate to oxaloacetate and L-glutamate. EC 2.6.1.1. Aspartate Aminotransferase,Aspartate Transaminase,Glutamic-Oxaloacetic Transaminase,SGOT,Aspartate Apoaminotransferase,Glutamate-Aspartate Transaminase,L-Aspartate-2-Oxoglutarate Aminotransferase,Serum Glutamic-Oxaloacetic Transaminase,Aminotransferase, Aspartate,Aminotransferase, L-Aspartate-2-Oxoglutarate,Aminotransferases, Aspartate,Apoaminotransferase, Aspartate,Glutamate Aspartate Transaminase,Glutamic Oxaloacetic Transaminase,Glutamic-Oxaloacetic Transaminase, Serum,L Aspartate 2 Oxoglutarate Aminotransferase,Serum Glutamic Oxaloacetic Transaminase,Transaminase, Aspartate,Transaminase, Glutamate-Aspartate,Transaminase, Glutamic-Oxaloacetic,Transaminase, Serum Glutamic-Oxaloacetic
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

G Czerlinski, and R Levin, and T Ypma
December 2023, Angewandte Chemie (International ed. in English),
G Czerlinski, and R Levin, and T Ypma
July 1997, The Journal of biological chemistry,
G Czerlinski, and R Levin, and T Ypma
April 1992, European journal of biochemistry,
G Czerlinski, and R Levin, and T Ypma
May 1995, Nihon rinsho. Japanese journal of clinical medicine,
G Czerlinski, and R Levin, and T Ypma
October 2001, Biochimica et biophysica acta,
G Czerlinski, and R Levin, and T Ypma
July 2019, Chemphyschem : a European journal of chemical physics and physical chemistry,
G Czerlinski, and R Levin, and T Ypma
September 2022, Journal of the American Chemical Society,
G Czerlinski, and R Levin, and T Ypma
August 1990, Clinical biochemistry,
G Czerlinski, and R Levin, and T Ypma
December 1998, European journal of gastroenterology & hepatology,
Copied contents to your clipboard!