Reconstitution of interactions between protein-tyrosine phosphatase CD45 and tyrosine-protein kinase p56(lck) in nonlymphoid cells. 1997

F G Gervais, and A Veillette
McGill Cancer Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada.

To further understand the functional interactions between CD45 and p56(lck) in T-cells, we stably reconstituted their expression in a nonlymphoid system. The results of our analyses demonstrated that CD45 could dephosphorylate tyrosine 505 of p56(lck) in NIH 3T3 fibroblasts. As is the case for T-cells, removal of the unique domain of p56(lck) interfered with dephosphorylation of tyrosine 505 in fibroblasts, further stressing the importance of this region in the interactions between CD45 and p56(lck). The ability of CD45 to dephosphorylate tyrosine 505 in NIH 3T3 cells was also greatly influenced by the catalytic activity of p56(lck). Indeed, whereas CD45 provoked dephosphorylation of kinase-defective Lck molecules in this system, it failed to stably dephosphorylate kinase-active p56(lck) polypeptides. Finally, our studies showed that CD45 was also able to inhibit the oncogenic potential of a constitutively activated version of p56(lck) in NIH 3T3 cells. This effect did not require the Lck unique domain and apparently resulted from selective dephosphorylation of substrates of activated p56(lck) in fibroblasts. In addition to providing insights into the nature and regulation of the interactions between CD45 and p56(lck) in T-cells, these results indicated that CD45 clearly has the capacity to both positively and negatively regulate p56(lck)-mediated functions in vivo.

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D009856 Oncogene Proteins, Viral Products of viral oncogenes, most commonly retroviral oncogenes. They usually have transforming and often protein kinase activities. Viral Oncogene Proteins,Viral Transforming Proteins,v-onc Proteins,Transforming Proteins, Viral,v onc Proteins
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine
D016475 3T3 Cells Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION. 3T3 Cell,Cell, 3T3,Cells, 3T3
D017027 Protein Tyrosine Phosphatases An enzyme group that specifically dephosphorylates phosphotyrosyl residues in selected proteins. Together with PROTEIN-TYROSINE KINASE, it regulates tyrosine phosphorylation and dephosphorylation in cellular signal transduction and may play a role in cell growth control and carcinogenesis. Phosphotyrosine Phosphatase,Protein-Tyrosine-Phosphatase,Tyrosyl Phosphoprotein Phosphatase,PTPase,Phosphotyrosyl Protein Phosphatase,Protein-Tyrosine Phosphatase,Phosphatase, Phosphotyrosine,Phosphatase, Phosphotyrosyl Protein,Phosphatase, Protein-Tyrosine,Phosphatase, Tyrosyl Phosphoprotein,Phosphatases, Protein Tyrosine,Phosphoprotein Phosphatase, Tyrosyl,Protein Phosphatase, Phosphotyrosyl,Protein Tyrosine Phosphatase,Tyrosine Phosphatases, Protein
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D019061 src-Family Kinases A PROTEIN-TYROSINE KINASE family that was originally identified by homology to the Rous sarcoma virus ONCOGENE PROTEIN PP60(V-SRC). They interact with a variety of cell-surface receptors and participate in intracellular signal transduction pathways. Oncogenic forms of src-family kinases can occur through altered regulation or expression of the endogenous protein and by virally encoded src (v-src) genes. Protein-Tyrosine Kinases, src,Src Family Tyrosine Kinase,src Kinase,src Kinases,src Tyrosine Kinase,src-Family Kinase,src-Family Tyrosine Kinase,src Tyrosine Kinases,src-Family Tyrosine Kinases,Kinase, src,Kinase, src Tyrosine,Kinase, src-Family,Kinase, src-Family Tyrosine,Kinases, src,Kinases, src Protein-Tyrosine,Kinases, src Tyrosine,Tyrosine Kinase, src,Tyrosine Kinase, src-Family,Tyrosine Kinases, src,Tyrosine Kinases, src-Family,src Family Kinase,src Family Kinases,src Family Tyrosine Kinases,src Protein-Tyrosine Kinases

Related Publications

F G Gervais, and A Veillette
April 1999, Archives of biochemistry and biophysics,
F G Gervais, and A Veillette
May 1998, International immunology,
F G Gervais, and A Veillette
May 2004, Biochemical pharmacology,
F G Gervais, and A Veillette
December 1996, Journal of immunology (Baltimore, Md. : 1950),
F G Gervais, and A Veillette
February 2007, Journal of immunology (Baltimore, Md. : 1950),
F G Gervais, and A Veillette
September 2000, The EMBO journal,
Copied contents to your clipboard!