Ferritin is a developmentally regulated nuclear protein of avian corneal epithelial cells. 1997

C X Cai, and D E Birk, and T F Linsenmayer
Department of Anatomy and Cellular Biology, Tufts University Medical School, Boston, Massachusetts 02111, USA.

Previously, we generated monoclonal antibodies against chicken corneal cells (Zak, N. B., and Linsenmayer, T. F. (1983) Dev. Biol. 99, 373). We have now observed that one group of these antibodies reacts with a developmentally regulated component of corneal epithelial cell nuclei. This component is the heavy chain of ferritin, as determined by analyses of immunoisolated cDNA clones and immunoblotting of the protein. Immunoblotting also suggests that the nuclear ferritin may be in a supramolecular form that is similar to the iron-binding ferritin complex found in the cytoplasm of many cells. In vitro cultures and transfection studies show that the nuclear localization depends predominantly on cell type but can be altered by the in vitro environment. The appearance of nuclear ferritin is at least partially under translational regulation, as is known to be true for the cytoplasmic form of the molecule. The tissue and developmental distributions of the mRNA for the molecule are much more extensive than the protein itself, and the removal of iron from cultures of corneal epithelial cells with the iron chelator deferoxamine prevents the appearance of nuclear ferritin. At present the functional role(s) of nuclear ferritin remain unknown, but previous studies on cytoplasmic ferritin raise the possibility that it prevents damage due to free radical generation ("oxidative stress") by sequestering iron. Although it remains to be tested whether nuclear ferritin prevents oxidative damage, we find this an attractive possibility. Since the corneal epithelium is transparent and is constantly exposed to free radical-generating UV light, it is possible that the cells of this tissue have evolved a specialized mechanism to prevent oxidative damage to their nuclear components.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003315 Cornea The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed) Corneas
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005293 Ferritins Iron-containing proteins that are widely distributed in animals, plants, and microorganisms. Their major function is to store IRON in a nontoxic bioavailable form. Each ferritin molecule consists of ferric iron in a hollow protein shell (APOFERRITINS) made of 24 subunits of various sequences depending on the species and tissue types. Basic Isoferritin,Ferritin,Isoferritin,Isoferritin, Basic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

C X Cai, and D E Birk, and T F Linsenmayer
August 2009, Investigative ophthalmology & visual science,
C X Cai, and D E Birk, and T F Linsenmayer
June 2001, Journal of cell science,
C X Cai, and D E Birk, and T F Linsenmayer
June 2003, The Journal of biological chemistry,
C X Cai, and D E Birk, and T F Linsenmayer
July 1998, Brain research. Developmental brain research,
C X Cai, and D E Birk, and T F Linsenmayer
August 1990, The Journal of biological chemistry,
C X Cai, and D E Birk, and T F Linsenmayer
September 1996, Developmental dynamics : an official publication of the American Association of Anatomists,
C X Cai, and D E Birk, and T F Linsenmayer
April 2016, Experimental eye research,
C X Cai, and D E Birk, and T F Linsenmayer
September 2008, Developmental dynamics : an official publication of the American Association of Anatomists,
C X Cai, and D E Birk, and T F Linsenmayer
October 2008, Developmental dynamics : an official publication of the American Association of Anatomists,
Copied contents to your clipboard!