Purine and pyrimidine nucleotide receptors in the apical membranes of equine cultured epithelia. 1997

W H Ko, and S M Wilson, and P Y Wong
Department of Physiology, Chinese University of Hong Kong, New Territories, Hong Kong.

1. The short circuit current (ISC) technique was used to quantify electrolyte transport by equine cultured sweat gland epithelia. Adenosine 5'-triphosphate (ATP) and certain related compounds, caused transient increases in ISC when added to the apical solution. The order of potency was uridine triphosphate (UTP) > ATP > ADP > > AMP = adenosine. 2. The responses to apical nucleotides were due to chloride and bicarbonate secretion and were reduced in pertussis toxin-treated cells. P2-receptors sensitive to uridine 5'-triphosphate (UTP), that interact with inhibitory G proteins, therefore appear to be present in the apical membrane. 3. Responses to ATP and UTP were reduced in cells loaded with BAPTA, a calcium chelator. BAPTA attenuated the response to ATP more than the response to UTP suggesting that these nucleotides may not act via a common pathway. 4. Cross-desensitization experiments indicated that two populations of UTP-sensitive receptor were present. One was sensitive to UTP and ATP, whereas the second was sensitive only to UTP. Uridine diphosphate appeared to activate the ATP-insensitive receptor population selectively. 5. These data suggest that apical pyrimidinoceptors may be expressed by these cells. The physiological role of these receptors is unknown but they may allow the autocrine regulation of epithelial function.

UI MeSH Term Description Entries
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D011983 Receptors, Purinergic Cell surface proteins that bind PURINES with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized classes of purinergic receptors in mammals are the P1 receptors, which prefer ADENOSINE, and the P2 receptors, which prefer ATP or ADP. Methyladenine Receptors,Purine Receptors,Purinergic Receptor,Purinergic Receptors,Purinoceptors,Purine Receptor,Purinoceptor,Receptors, Methyladenine,Receptors, Purine,Receptor, Purine,Receptor, Purinergic
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine

Related Publications

W H Ko, and S M Wilson, and P Y Wong
January 2004, Current topics in medicinal chemistry,
W H Ko, and S M Wilson, and P Y Wong
June 2007, Cellular and molecular life sciences : CMLS,
W H Ko, and S M Wilson, and P Y Wong
January 2002, The arabidopsis book,
W H Ko, and S M Wilson, and P Y Wong
January 1991, Advances in experimental medicine and biology,
W H Ko, and S M Wilson, and P Y Wong
November 2003, Journal of plant physiology,
W H Ko, and S M Wilson, and P Y Wong
January 2011, Advances in pharmacology (San Diego, Calif.),
W H Ko, and S M Wilson, and P Y Wong
December 1979, The Journal of biological chemistry,
W H Ko, and S M Wilson, and P Y Wong
January 2011, Advances in pharmacology (San Diego, Calif.),
W H Ko, and S M Wilson, and P Y Wong
January 2011, Advances in pharmacology (San Diego, Calif.),
Copied contents to your clipboard!