Disappearance of the sigma E transcription factor from the forespore and the SpoIIE phosphatase from the mother cell contributes to establishment of cell-specific gene expression during sporulation in Bacillus subtilis. 1997

K Pogliano, and A E Hofmeister, and R Losick
Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

We used immunofluorescence microscopy to investigate mechanisms governing the establishment of cell-specific gene transcription during sporulation in the bacterium Bacillus subtilis. The transcription factors sigma E and sigma F are synthesized shortly after the start of sporulation but do not become active in directing gene transcription until after polar division, when the activity of sigma E is confined to the mother cell and the activity of sigma F is restricted to the forespore. We show that shortly after septation, sigma E and its proprotein precursor pro-sigma E appear to be absent from the forespore and that a null mutation in spoIIIE, a gene known to be required for the translocation of a chromosome into the forespore, allows sigma E and/or pro-sigma E to persist and sigma E to become active in the forespore. These findings suggest that the loss of sigma E/pro-sigma E from the forespore contributes to the compartmentalization of sigma E-directed gene transcription. We also investigated the distribution of SpoIIE, a regulatory phosphatase required for the activation of sigma F which exhibits a bipolar pattern of localization shortly after the start of sporulation. Normally, SpoIIE rapidly disappears from the sporangium, first from the mother-cell pole and then from the forespore pole. Here we show that a null mutation in spoIIIE causes the SpoIIE phosphatase to persist at both poles. The persistence of the SpoIIE phosphatase at the mother-cell pole could explain the lack of compartmentalization of sigma F activity observed in a spoIIIE null mutant. We conclude that the establishment of cell-specific gene transcription involves the loss of sigma E/pro-sigma E from the forespore and the loss of the SpoIIE phosphatase from the mother-cell pole and that both processes are dependent upon the SpoIIIE protein.

UI MeSH Term Description Entries
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012808 Sigma Factor A protein which is a subunit of RNA polymerase. It effects initiation of specific RNA chains from DNA. Sigma Element,Sigma Initiation Factor,Sigma Subunit,Minor Sigma Factor,RNA Polymerase Sigma Factor H,Factor, Sigma,Factor, Sigma Initiation,Initiation Factor, Sigma,Sigma Factor, Minor,Subunit, Sigma
D013171 Spores, Bacterial Heat and stain resistant, metabolically inactive bodies formed within the vegetative cells of bacteria of the genera Bacillus and Clostridium. Bacterial Spores,Bacterial Spore,Spore, Bacterial
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D016254 Mutagenesis, Insertional Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation. Gene Insertion,Insertion Mutation,Insertional Activation,Insertional Mutagenesis,Linker-Insertion Mutagenesis,Mutagenesis, Cassette,Sequence Insertion,Viral Insertional Mutagenesis,Activation, Insertional,Activations, Insertional,Cassette Mutagenesis,Gene Insertions,Insertion Mutations,Insertion, Gene,Insertion, Sequence,Insertional Activations,Insertional Mutagenesis, Viral,Insertions, Gene,Insertions, Sequence,Linker Insertion Mutagenesis,Mutagenesis, Linker-Insertion,Mutagenesis, Viral Insertional,Mutation, Insertion,Mutations, Insertion,Sequence Insertions

Related Publications

K Pogliano, and A E Hofmeister, and R Losick
May 2001, Journal of bacteriology,
K Pogliano, and A E Hofmeister, and R Losick
October 1994, Current opinion in genetics & development,
K Pogliano, and A E Hofmeister, and R Losick
March 1992, Molecular microbiology,
K Pogliano, and A E Hofmeister, and R Losick
April 1992, Journal of bacteriology,
K Pogliano, and A E Hofmeister, and R Losick
April 1996, Proceedings of the National Academy of Sciences of the United States of America,
K Pogliano, and A E Hofmeister, and R Losick
November 1991, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!