Growth hormone and bile acid synthesis. Key role for the activity of hepatic microsomal cholesterol 7alpha-hydroxylase in the rat. 1997

M Rudling, and P Parini, and B Angelin
Department of Medicine, Karolinska Institute at Huddinge University Hospital, Sweden. mats.rudling@cnt.ki.se

Growth hormone (GH) has an important role in the regulation of hepatic LDL receptor expression and plasma lipoprotein levels. This investigation was undertaken to characterize the effects of GH on hepatic cholesterol and bile acid metabolism in the rat. In hypophysectomized (Hx) rats, the activities of the rate-limiting enzymes in cholesterol and bile acid biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase) and cholesterol 7alpha-hydroxylase (C7alphaOH), were reduced by 71 and 64%, respectively. HMG CoA reductase mRNA levels were reduced by 37%, whereas C7alphaOH mRNA was increased by 81%. LDL receptor expression was reduced by 18% in Hx rats, without any change in the LDL receptor mRNA levels. Although the normal diurnal variation of C7alphaOH activity was preserved in Hx rats, the activity of C7alphaOH was much reduced both at midday and midnight. Total hepatic cholesterol was increased by 14% in Hx animals whereas microsomal cholesterol was unchanged. The rate of cholesterol esterification was enhanced (by 38%) in liver microsomes from Hx rats. Stepwise hormonal substitution of Hx rats showed that GH, but not thyroid hormone or cortisone, was essential to normalize the enzymatic activity of C7alphaOH. GH also normalized the altered plasma lipoprotein pattern in Hx rats, and increased the fecal output of bile acids. The latter effect was particularly evident when GH was combined with cortisone and thyroid hormone. Also in normal rats, GH stimulated C7alphaOH activity. In conclusion, GH has an essential role to maintain a normal enzymatic activity of C7alphaOH, and this, at least in part, explains the effects of GH on hepatic cholesterol metabolism. GH is also of critical importance to normalize the altered plasma lipoprotein pattern in Hx rats.

UI MeSH Term Description Entries
D007016 Hypophysectomy Surgical removal or destruction of the hypophysis, or pituitary gland. (Dorland, 28th ed) Hypophysectomies
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D011973 Receptors, LDL Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking. LDL Receptors,Lipoprotein LDL Receptors,Receptors, Low Density Lipoprotein,LDL Receptor,LDL Receptors, Lipoprotein,Low Density Lipoprotein Receptor,Low Density Lipoprotein Receptors,Receptors, Lipoprotein, LDL,Receptor, LDL,Receptors, Lipoprotein LDL
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D002790 Cholesterol 7-alpha-Hydroxylase A membrane-bound cytochrome P450 enzyme that catalyzes the 7-alpha-hydroxylation of CHOLESTEROL in the presence of molecular oxygen and NADPH-FERRIHEMOPROTEIN REDUCTASE. This enzyme, encoded by CYP7, converts cholesterol to 7-alpha-hydroxycholesterol which is the first and rate-limiting step in the synthesis of BILE ACIDS. CYP7,CYP7A,Cytochrome P-450 CYP7,CYP 7,CYP 7A,Cholesterol 7-alpha-Monooxygenase,Cholesterol 7alpha-Hydroxylase,Cholesterol-7-Hydroxylase,Cytochrome P450 7,Cholesterol 7 Hydroxylase,Cholesterol 7 alpha Hydroxylase,Cholesterol 7 alpha Monooxygenase,Cholesterol 7alpha Hydroxylase,Cytochrome P 450 CYP7
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms

Related Publications

M Rudling, and P Parini, and B Angelin
December 1989, Gastroenterology,
M Rudling, and P Parini, and B Angelin
August 1973, European journal of biochemistry,
M Rudling, and P Parini, and B Angelin
April 1978, Biochemical pharmacology,
M Rudling, and P Parini, and B Angelin
September 1976, Atherosclerosis,
M Rudling, and P Parini, and B Angelin
September 2000, Archives of biochemistry and biophysics,
M Rudling, and P Parini, and B Angelin
March 1974, Journal of lipid research,
Copied contents to your clipboard!