Somatosensory- and motor-evoked potentials in a rabbit model of spinal cord ischemia and reperfusion injury. 1997

M Zhao, and Y Zhang, and L Liu, and Y Liu, and W Liao
Department of Central Nervous System Injuries, Third Military Medical University, Daping, Chongqing, China.

METHODS Occlusion of the infrarenal abdominal aorta was applied to adult rabbits, which induced spinal cord ischemia, followed by disocclusion and reperfusion. Cortical somatosensory- and motor-evoked potentials were monitored continuously up to 24 hours and correlated to hind limb motor and sensory status. OBJECTIVE To investigate cortical somatosensory-, and motor-evoked potentials in the rabbit model of spinal cord ischemia and reperfusion injury, especially their changes during reperfusion and their relationship to hind limb motor and sensory function. BACKGROUND Various evoked potentials have been widely studied in neurologic prognosis of spinal cord ischemia. Little information is available from previous studies to correlate cortical somatosensory- and motor-evoked potentials with secondary paraplegia occurring during the reperfusion phase. METHODS Acute spinal cord ischemia was induced in eight anesthetized rabbits by occlusion of the infrarenal abdominal aorta just beneath left renal artery for 40 minutes. Cortical somatosensory-evoked potentials, elicited by stimulating the posterior tibial nerve and recorded at the skull surface corresponding to sensory projection area, and motor-evoked potentials, elicited by stimulating the skull surface corresponding to the motor projection area and recorded at L4 lamina of the vertebral arch, were monitored immediately before and at different time points during ischemia and reperfusion up to 24 hours after disocclusion. Hind limb motor and sensory functions were evaluated and correlated with cortical somatosensory- and evoked-potentials. RESULTS Cortical somatosensory-evoked potentials disappeared gradually after the start of occlusion and reappeared during reperfusion. Motor-evoked potentials did not change significantly during occlusion, but deteriorated after disocclusion; they correlated well with hind limb motor and sensory status. CONCLUSIONS Reperfusion injuries to the spinal cord might occur in the rabbit model after disocclusion. Cortical somatosensory-evoked potentials seemed to be a very sensitive index for spinal cord ischemia, whereas motor-evoked potentials correlated well with the course of reperfusion injuries after disocclusion and reflected long-term follow-up hind limb motor function better than cortical somatosensory-evoked potentials.

UI MeSH Term Description Entries
D007511 Ischemia A hypoperfusion of the BLOOD through an organ or tissue caused by a PATHOLOGIC CONSTRICTION or obstruction of its BLOOD VESSELS, or an absence of BLOOD CIRCULATION. Ischemias
D008297 Male Males
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D015427 Reperfusion Injury Adverse functional, metabolic, or structural changes in tissues that result from the restoration of blood flow to the tissue (REPERFUSION) following ISCHEMIA. Ischemia-Reperfusion Injury,Injury, Ischemia-Reperfusion,Injury, Reperfusion,Reperfusion Damage,Damage, Reperfusion,Injury, Ischemia Reperfusion,Ischemia Reperfusion Injury,Ischemia-Reperfusion Injuries,Reperfusion Damages,Reperfusion Injuries
D019054 Evoked Potentials, Motor The electrical response evoked in a muscle or motor nerve by electrical or magnetic stimulation. Common methods of stimulation are by transcranial electrical and TRANSCRANIAL MAGNETIC STIMULATION. It is often used for monitoring during neurosurgery. Motor Evoked Potentials,Evoked Potential, Motor,Motor Evoked Potential,Potential, Motor Evoked,Potentials, Motor Evoked

Related Publications

M Zhao, and Y Zhang, and L Liu, and Y Liu, and W Liao
November 2013, Neural regeneration research,
M Zhao, and Y Zhang, and L Liu, and Y Liu, and W Liao
September 2001, Neurology India,
M Zhao, and Y Zhang, and L Liu, and Y Liu, and W Liao
February 2023, Neural regeneration research,
M Zhao, and Y Zhang, and L Liu, and Y Liu, and W Liao
December 2001, Anesthesiology clinics of North America,
M Zhao, and Y Zhang, and L Liu, and Y Liu, and W Liao
October 1990, Journal of clinical monitoring,
M Zhao, and Y Zhang, and L Liu, and Y Liu, and W Liao
January 2019, Journal of neuroscience methods,
M Zhao, and Y Zhang, and L Liu, and Y Liu, and W Liao
January 1992, Journal of the neurological sciences,
M Zhao, and Y Zhang, and L Liu, and Y Liu, and W Liao
August 1984, Electroencephalography and clinical neurophysiology,
M Zhao, and Y Zhang, and L Liu, and Y Liu, and W Liao
July 2018, Veterinary journal (London, England : 1997),
M Zhao, and Y Zhang, and L Liu, and Y Liu, and W Liao
January 2010, Nan fang yi ke da xue xue bao = Journal of Southern Medical University,
Copied contents to your clipboard!