Distribution of pre-mRNA splicing factors at sites of RNA polymerase II transcription. 1997

K M Neugebauer, and M B Roth
Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. neugebau@embl-heidelberg.de

If pre-mRNA splicing begins during RNA synthesis, then transcriptionally active genes may be expected to contain high concentrations of pre-mRNA splicing factors. However, previous studies have localized splicing factors to a network of "speckles," which is distinct from individual sites of gene transcription where pre-mRNA is spliced. Speckles have been detected with antibodies specific for splicing snRNPs and members of the SR family of splicing factors. Here we report that dilution of these probes results in the visualization of hundreds of sites throughout the HeLa cell nucleus, the size and distribution of which are consistent with transcription units viewed with light microscopy. Importantly, these sites of highest SR protein concentration frequently coincide in three-dimensional space with active sites of RNA polymerase II transcription. A newly developed reagent specific for a single member of the SR family, SRp20, detects a subset (approximately 20%) of these sites, suggesting the gene-specific accumulation of these splicing regulators, which have distinct functions in pre-mRNA splicing. These observations question the view that the nucleus and its functions are highly compartmentalized; instead, they support a model in which the localization of these and possibly other gene regulators is determined primarily by their function.

UI MeSH Term Description Entries
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010750 Phosphoproteins Phosphoprotein
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000068103 Serine-Arginine Splicing Factors A family of regulatory factors essential for constitutive and alternative splicing in RNA metabolism. SR-Rich Splicing Proteins,Serine-Arginine-Rich Splicing Proteins,Factors, Serine-Arginine Splicing,Proteins, SR-Rich Splicing,Proteins, Serine-Arginine-Rich Splicing,SR Rich Splicing Proteins,Serine Arginine Rich Splicing Proteins,Serine Arginine Splicing Factors,Splicing Factors, Serine-Arginine,Splicing Proteins, SR-Rich,Splicing Proteins, Serine-Arginine-Rich
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II
D012322 RNA Precursors RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production. Precursor RNA,Primary RNA Transcript,RNA, Messenger, Precursors,RNA, Ribosomal, Precursors,RNA, Small Nuclear, Precursors,RNA, Transfer, Precursors,Pre-mRNA,Pre-rRNA,Pre-snRNA,Pre-tRNA,Primary Transcript, RNA,RNA Precursor,mRNA Precursor,rRNA Precursor,snRNA Precursor,tRNA Precursor,Pre mRNA,Pre rRNA,Pre snRNA,Pre tRNA,Precursor, RNA,Precursor, mRNA,Precursor, rRNA,Precursor, snRNA,Precursor, tRNA,Precursors, RNA,RNA Primary Transcript,RNA Transcript, Primary,RNA, Precursor,Transcript, Primary RNA,Transcript, RNA Primary

Related Publications

K M Neugebauer, and M B Roth
June 2016, Journal of molecular biology,
K M Neugebauer, and M B Roth
May 1999, Genes & development,
K M Neugebauer, and M B Roth
November 1993, Biochemical Society transactions,
K M Neugebauer, and M B Roth
January 1997, The Journal of cell biology,
K M Neugebauer, and M B Roth
June 1999, Current opinion in cell biology,
K M Neugebauer, and M B Roth
May 1996, The Journal of cell biology,
K M Neugebauer, and M B Roth
November 2001, Molecular and cellular biology,
K M Neugebauer, and M B Roth
December 2014, Genes & development,
Copied contents to your clipboard!