Biochemical and mutational studies of the 5'-3' exonuclease of DNA polymerase I of Escherichia coli. 1997

Y Xu, and V Derbyshire, and K Ng, and X C Sun, and N D Grindley, and C M Joyce
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.

In order to improve our understanding of the 5'-3' exonuclease reaction catalyzed by Escherichia coli DNA polymerase I, we have constructed expression plasmids and developed purification methods for whole DNA polymerase I and its 5'-3' exonuclease domain that allow the production of large quantities of highly purified material suitable for biophysical and other studies. We have studied the enzymatic properties of the 5'-3' exonuclease, both as an isolated domain and in the context of the whole polymerase, using a variety of model oligonucleotides to explore the enzyme-substrate interaction. The 5'-3' exonuclease is known to be a structure-specific nuclease that cleaves a 5' displaced strand at the junction between single-stranded and duplex regions. Since the isolated domain shows the same structure specificity as the whole polymerase, the correct geometry of substrate binding is achieved without the assistance of the polymerase domain. The 5'-3' exonuclease reaction has a strict requirement for a free 5' end on the displaced strand; however, the upstream template and primer strands are dispensable. Site-directed mutagenesis of the ten carboxylate residues that are highly conserved among bacterial and bacteriophage 5'-3' exonucleases indicates that nine of them are important in the reaction. This finding is discussed in relation to structural and mutational data for related 5' nucleases.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002264 Carboxylic Acids Organic compounds containing the carboxy group (-COOH). This group of compounds includes amino acids and fatty acids. Carboxylic acids can be saturated, unsaturated, or aromatic. Carboxylic Acid,Acid, Carboxylic,Acids, Carboxylic
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D004256 DNA Polymerase I A DNA-dependent DNA polymerase characterized in prokaryotes and may be present in higher organisms. It has both 3'-5' and 5'-3' exonuclease activity, but cannot use native double-stranded DNA as template-primer. It is not inhibited by sulfhydryl reagents and is active in both DNA synthesis and repair. DNA Polymerase alpha,DNA-Dependent DNA Polymerase I,Klenow Fragment,DNA Pol I,DNA Dependent DNA Polymerase I,Polymerase alpha, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005092 Exonucleases Enzymes that catalyze the release of mononucleotides by the hydrolysis of the terminal bond of deoxyribonucleotide or ribonucleotide chains. Exonuclease,3'-5'-Exonuclease,3'-5'-Exonucleases,5'-3'-Exonuclease,5'-3'-Exonucleases,3' 5' Exonuclease,3' 5' Exonucleases,5' 3' Exonuclease,5' 3' Exonucleases
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D016384 Consensus Sequence A theoretical representative nucleotide or amino acid sequence in which each nucleotide or amino acid is the one which occurs most frequently at that site in the different sequences which occur in nature. The phrase also refers to an actual sequence which approximates the theoretical consensus. A known CONSERVED SEQUENCE set is represented by a consensus sequence. Commonly observed supersecondary protein structures (AMINO ACID MOTIFS) are often formed by conserved sequences. Consensus Sequences,Sequence, Consensus,Sequences, Consensus

Related Publications

Y Xu, and V Derbyshire, and K Ng, and X C Sun, and N D Grindley, and C M Joyce
September 1998, Nucleic acids research,
Y Xu, and V Derbyshire, and K Ng, and X C Sun, and N D Grindley, and C M Joyce
November 1995, Nucleic acids research,
Y Xu, and V Derbyshire, and K Ng, and X C Sun, and N D Grindley, and C M Joyce
October 1990, The Journal of biological chemistry,
Y Xu, and V Derbyshire, and K Ng, and X C Sun, and N D Grindley, and C M Joyce
August 2000, The Journal of biological chemistry,
Y Xu, and V Derbyshire, and K Ng, and X C Sun, and N D Grindley, and C M Joyce
September 1993, Nucleic acids research,
Y Xu, and V Derbyshire, and K Ng, and X C Sun, and N D Grindley, and C M Joyce
August 1999, The Journal of biological chemistry,
Y Xu, and V Derbyshire, and K Ng, and X C Sun, and N D Grindley, and C M Joyce
November 1983, Nucleic acids research,
Y Xu, and V Derbyshire, and K Ng, and X C Sun, and N D Grindley, and C M Joyce
December 1993, The Journal of biological chemistry,
Y Xu, and V Derbyshire, and K Ng, and X C Sun, and N D Grindley, and C M Joyce
September 1980, Comptes rendus des seances de l'Academie des sciences. Serie D, Sciences naturelles,
Copied contents to your clipboard!