Crystal structure of the aspartic proteinase from Rhizomucor miehei at 2.15 A resolution. 1997

J Yang, and A Teplyakov, and J W Quail
Department of Chemistry, University of Saskatchewan, Saskatoon, Canada.

The crystal structure of the aspartic proteinase from Rhizomucor miehei (RMP, EC 3. 4. 23. 23) has been refined to 2.15 A resolution to a crystallographic R-value of 0.215 and an Rfree of 0.281. The root-mean-square (r.m.s.) error for the atomic coordinates estimated from a Luzzati plot is 0.2 A. The r.m.s. deviations for the bond distances and bond angles from ideality are 0.01 A and 1.7 degrees, respectively. RMP contains two domains that consist predominantly of beta-sheets. A large substrate-binding cleft is clearly visible between the two domains, and the two catalytic residues Asp38 and Asp237 are located in the middle of the cleft with a water molecule bridging the carboxyl groups of Asp38 and Asp237. Due to crystal packing, the C-terminal domain is more mobile than the N-terminal domain. Most of the aspartic proteinases (except renin) reach their maximum activity at acidic pH. We propose that the optimum pH of each aspartic proteinase is determined by the electrostatic potential at the active site, which, in turn, is determined by the positions and orientations of all the residues near the active site. RMP is the most glycosylated among the aspartic proteinases. The carbohydrate moieties are linked to Asn79 and Asn188. Asn79 is in the middle of a beta-strand and Asn188 is on a surface loop in contrast to the previous hypothesis proposed by Brown and Yada that they are both on surface beta-turns. RMP has a very high thermal stability. The high thermal stability is probably due to the high level of glycosylation. We propose that the highly flexible carbohydrates act as heat reservoirs to stabilize the conformation of RMP and therefore give the enzyme a high level of thermal stability. Three-dimensional structural and sequence alignments of RMP with other aspartic proteinases show that RMP is most structurally homologous to that of Mucor pusillus (MPP), and differs from other fungal enzymes as much as it does from the mammalian enzymes. This suggests that RMP and MPP diverged from the main stream of aspartic proteinases at an early stage of evolution. The present study adds a second member to this subfamily of aspartic proteinases.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009090 Mucorales An order of zygomycetous fungi, usually saprophytic, causing damage to food in storage, but which may cause respiratory infection or MUCORMYCOSIS in persons suffering from other debilitating diseases. Mucoraceae,Thamnidiaceae
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003461 Crystallography The branch of science that deals with the geometric description of crystals and their internal arrangement. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystallographies
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D016282 Aspartic Acid Endopeptidases A sub-subclass of endopeptidases that depend on an ASPARTIC ACID residue for their activity. Aspartic Endopeptidases,Aspartyl Endopeptidases,Acid Endopeptidases, Aspartic,Endopeptidases, Aspartic Acid,Endopeptidases, Aspartyl
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein

Related Publications

J Yang, and A Teplyakov, and J W Quail
January 1998, Advances in experimental medicine and biology,
J Yang, and A Teplyakov, and J W Quail
March 1999, Acta crystallographica. Section D, Biological crystallography,
J Yang, and A Teplyakov, and J W Quail
March 1995, Acta crystallographica. Section D, Biological crystallography,
J Yang, and A Teplyakov, and J W Quail
October 1992, Journal of molecular biology,
J Yang, and A Teplyakov, and J W Quail
January 1998, Advances in experimental medicine and biology,
J Yang, and A Teplyakov, and J W Quail
December 1997, Nature structural biology,
J Yang, and A Teplyakov, and J W Quail
October 2015, Biochemical and biophysical research communications,
J Yang, and A Teplyakov, and J W Quail
January 1996, Journal of molecular biology,
Copied contents to your clipboard!