Differential control of the hyperpolarization-activated current (i(f)) by cAMP gating and phosphatase inhibition in rabbit sino-atrial node myocytes. 1997

E A Accili, and G Redaelli, and D DiFrancesco
Università di Milano, Dipartimento di Fisiologia e Biochimica Generali, Italy.

1. The actions of the phosphatase inhibitor calyculin A on the hyperpolarization-activated cardiac 'pacemaker' current (i(f)) were determined in single cells isolated from the sino-atrial (SA) node of the rabbit. 2. Cells were incubated for 8 min in Tyrode solution containing calyculin A (0.5 microM) and then superfused with normal Tyrode solution. The mean normalized i(f) measured in eight cells at mid-activation voltages during and after exposure to calyculin A increased maximally by 47% with a time constant of 466 s, a time much longer than that required for cAMP-mediated i(f) stimulation (about 8 s). 3. In two-pulse protocols, calyculin A treatment increased i(f) at full as well as at mid-activation voltages, indicating a higher i(f) conductance. 4. Measurement of the conductance-voltage (gf(V)) relation by voltage ramp protocols confirmed a conductance increase by calyculin A, with no significant change in the position of the activation curve on the voltage axis. Data pooled together from ramp and two-pulse protocols yielded a calyculin A-induced increase in fully activated i(f) conductance of 39.6 +/- 6.4% (n = 16 cells). 5. The positive and negative shift of i(f) voltage dependence in response to beta-adrenergic (1 microM isoprenaline) and muscarinic stimulation (1 microM acetylcholine), respectively, was preserved after the calyculin A-induced increase in conductance. The shift of the i(f) activation curve induced by 1 microM isoprenaline was significantly larger in calyculin A-treated cells (8.8 vs. 5.8 mV). 6. These data indicate that phosphatase inhibition increases i(f) in a manner distinct from the direct cAMP pathway and potentiates the beta-adrenergic-mediated i(f) modulation.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008387 Marine Toxins Toxic or poisonous substances elaborated by marine flora or fauna. They include also specific, characterized poisons or toxins for which there is no more specific heading, like those from poisonous FISHES. Marine Biotoxins,Phycotoxins
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010080 Oxazoles Five-membered heterocyclic ring structures containing an oxygen in the 1-position and a nitrogen in the 3-position, in distinction from ISOXAZOLES where they are at the 1,2 positions. Oxazole,1,3-Oxazolium-5-Oxides,Munchnones,1,3 Oxazolium 5 Oxides
D010744 Phosphoric Monoester Hydrolases A group of hydrolases which catalyze the hydrolysis of monophosphoric esters with the production of one mole of orthophosphate. Phosphatase,Phosphatases,Phosphohydrolase,Phosphohydrolases,Phosphomonoesterase,Phosphomonoesterases,Phosphoric Monoester Hydrolase,Hydrolase, Phosphoric Monoester,Hydrolases, Phosphoric Monoester,Monoester Hydrolase, Phosphoric
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

E A Accili, and G Redaelli, and D DiFrancesco
November 1988, The Journal of physiology,
E A Accili, and G Redaelli, and D DiFrancesco
February 1994, The Journal of physiology,
E A Accili, and G Redaelli, and D DiFrancesco
November 1988, The Journal of physiology,
E A Accili, and G Redaelli, and D DiFrancesco
June 1994, The Journal of physiology,
E A Accili, and G Redaelli, and D DiFrancesco
May 1994, Pflugers Archiv : European journal of physiology,
E A Accili, and G Redaelli, and D DiFrancesco
January 1992, The Journal of physiology,
E A Accili, and G Redaelli, and D DiFrancesco
June 1997, The Journal of physiology,
E A Accili, and G Redaelli, and D DiFrancesco
February 2003, Cardiovascular research,
E A Accili, and G Redaelli, and D DiFrancesco
December 1998, Journal of molecular and cellular cardiology,
Copied contents to your clipboard!