[Ketamine racemate and S-(+)-ketamine. Cerebrovascular effects and neuroprotection following focal ischemia]. 1997

C Werner, and W Reeker, and K Engelhard, and H Lu, and E Kochs
Institut für Anaesthesiologie, Technische Universität München.

The phencyclidine derivative ketamine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist with the thalamo-neocortical projection system as the primary site of action. Racemic ketamine consists of the enantiomers S(+)-ketamine and R(-)-ketamine. Racemic ketamine has never been considered an adequate anaesthetic agent in neurosurgical patients since it produces regionally specific stimulation of cerebral metabolism (CMRO2) and increases cerebral blood flow (CBF) and intracranial pressure (ICP). However, recent experiments suggest that both tracemic ketamine and S(+)-ketamine may reduce infarct size in animal models of incomplete cerebral ischaemia and brain injury. This experimental protective effect appears to be related to decreases in Ca++ influx and maintenance of brain tissue magnesium levels due to NMDA and quisqualate receptor blockade by ketamine. Studies in dogs have shown that racemic ketamine (2.0 mg/kg) increases CBF in the presence of the cerebral vasodilator N2O. In contrast, studies in rats without background anaesthesia showed increases in CBF after racemic ketamine (100 mg/kg i.p.). This suggests that the cerebrovascular effects of racemic ketamine are related to the pre-existing cerebrovascular tone induced by background anaesthetics. Cerebrovascular CO2 reactivity was maintained regardless of the baseline cerebrovascular resistance. There are several mechanisms by which racemic ketamine may increase CBF. It induces dose-dependent respiratory depression with consequent mild hypercapnia in spontaneously ventilating subjects. This produces vasodilation due to the intact cerebrovascular CO2 reactivity. Racemic ketamine also induces regional neuroexcitation, which leads to stimulation of cerebral glucose consumption in the limbic, extrapyramidal, auditory, and sensory-motor systems. This regional neuroexcitation with increased CMRO2 produces increases in CBF that can be blocked by infusion of barbiturates or benzodiazepines. However, increases in CBF with racemic ketamine (1 mg/kg) may also occur during normocapnia and without changes in CMRO2. This effect is related to some additional direct cerebral vasodilating potency of racemic ketamine based on a mechanism involving blockade of Ca++ channels. The effects of racemic ketamine on CBF autoregulation have not been investigated systematically. However, studies in rats have shown that CBF autoregulation was maintained with low- and high-dose S(+)-ketamine. Infusion of racemic ketamine alters intracranial volume and ICP. Studies in spontaneously ventilating pigs with and without intracranial hypertension have shown that racemic ketamine (0.5-5.0 mg/kg) produces increases in PaCO2 and ICP. In contrast, identical experiments with mechanical ventilation and controlled PaCO2 showed no changes in ICP following racemic ketamine infusion. This implies that increases in ICP are related to inadequate ventilation with consecutive hypercapnia and increases in intracranial blood volume. However, mechanical ventilation may not be sufficient to control ICP following racemic ketamine. Experiments in mechanically ventilated dogs indicate that racemic ketamine (2 mg/kg) increases cerebral blood volume and ICP even in the presence of normoventilation, a response that is reversible by hyperventilation or the administration of diazepam. Studies in patients have shown that racemic ketamine (2.0 mg/kg) reduces CBF in the presence of cerebral vasodilators like halothane or N2O. In contrast, studies in unanaesthetised humans showed increases in CBF after racemic ketamine (2-3 mg/kg). This observation is consistent with animal studies and suggests that the cerebrovascular effects of racemic ketamine are related to the pre-existing cerebrovascular tone induced by background anaesthetics. Studies in humans with and without intracranial pathology confirm the data from animal experiments. (ABSTRACT TRUNCATED)

UI MeSH Term Description Entries
D007649 Ketamine A cyclohexanone derivative used for induction of anesthesia. Its mechanism of action is not well understood, but ketamine can block NMDA receptors (RECEPTORS, N-METHYL-D-ASPARTATE) and may interact with sigma receptors. 2-(2-Chlorophenyl)-2-(methylamino)cyclohexanone,CI-581,Calipsol,Calypsol,Kalipsol,Ketalar,Ketamine Hydrochloride,Ketanest,Ketaset,CI 581,CI581
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D002560 Cerebrovascular Circulation The circulation of blood through the BLOOD VESSELS of the BRAIN. Brain Blood Flow,Regional Cerebral Blood Flow,Cerebral Blood Flow,Cerebral Circulation,Cerebral Perfusion Pressure,Circulation, Cerebrovascular,Blood Flow, Brain,Blood Flow, Cerebral,Brain Blood Flows,Cerebral Blood Flows,Cerebral Circulations,Cerebral Perfusion Pressures,Circulation, Cerebral,Flow, Brain Blood,Flow, Cerebral Blood,Perfusion Pressure, Cerebral,Pressure, Cerebral Perfusion
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D018691 Excitatory Amino Acid Antagonists Drugs that bind to but do not activate excitatory amino acid receptors, thereby blocking the actions of agonists. Amino Acids, Excitatory, Antagonists,Excitatory Amino Acid Antagonist,Glutamate Antagonist,Glutamate Antagonists,Glutamate Receptor Antagonist,Amino Acid Antagonists, Excitatory,Antagonists, Excitatory Amino Acid,EAA Antagonists,Glutamate Receptor Antagonists,Antagonist, Glutamate,Antagonist, Glutamate Receptor,Antagonists, EAA,Antagonists, Glutamate,Antagonists, Glutamate Receptor,Receptor Antagonist, Glutamate,Receptor Antagonists, Glutamate
D018696 Neuroprotective Agents Drugs intended to prevent damage to the brain or spinal cord from ischemia, stroke, convulsions, or trauma. Some must be administered before the event, but others may be effective for some time after. They act by a variety of mechanisms, but often directly or indirectly minimize the damage produced by endogenous excitatory amino acids. Neuroprotectant,Neuroprotective Agent,Neuroprotective Drug,Neuroprotectants,Neuroprotective Drugs,Neuroprotective Effect,Neuroprotective Effects,Agent, Neuroprotective,Agents, Neuroprotective,Drug, Neuroprotective,Drugs, Neuroprotective,Effect, Neuroprotective,Effects, Neuroprotective

Related Publications

C Werner, and W Reeker, and K Engelhard, and H Lu, and E Kochs
June 2001, Brain research,
C Werner, and W Reeker, and K Engelhard, and H Lu, and E Kochs
October 1992, Der Anaesthesist,
C Werner, and W Reeker, and K Engelhard, and H Lu, and E Kochs
October 1992, Der Anaesthesist,
C Werner, and W Reeker, and K Engelhard, and H Lu, and E Kochs
May 1993, Der Anaesthesist,
C Werner, and W Reeker, and K Engelhard, and H Lu, and E Kochs
January 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
C Werner, and W Reeker, and K Engelhard, and H Lu, and E Kochs
March 1998, Der Anaesthesist,
C Werner, and W Reeker, and K Engelhard, and H Lu, and E Kochs
December 1997, Der Anaesthesist,
C Werner, and W Reeker, and K Engelhard, and H Lu, and E Kochs
September 1995, Annals of the New York Academy of Sciences,
C Werner, and W Reeker, and K Engelhard, and H Lu, and E Kochs
November 1994, Der Anaesthesist,
Copied contents to your clipboard!