Visuospatial properties of ventral premotor cortex. 1997

M S Graziano, and X T Hu, and C G Gross
Department of Psychology, Princeton University, New Jersey 08544, USA.

In macaque ventral premotor cortex, we recorded the activity of neurons that responded to both visual and tactile stimuli. For these bimodal cells, the visual receptive field extended from the tactile receptive field into the adjacent space. Their tactile receptive fields were organized topographically, with the arms represented medially, the face represented in the middle, and the inside of the mouth represented laterally. For many neurons, both the visual and tactile responses were directionally selective, although many neurons also responded to stationary stimuli. In the awake monkeys, for 70% of bimodal neurons with a tactile response on the arm, the visual receptive field moved when the arm was moved. In contrast, for 0% the visual receptive field moved when the eye or head moved. Thus the visual receptive fields of most "arm + visual" cells were anchored to the arm, not to the eye or head. In the anesthetized monkey, the effect of arm position was similar. For 95% of bimodal neurons with a tactile response on the face, the visual receptive field moved as the head was rotated. In contrast, for 15% the visual receptive field moved with the eye and for 0% it moved with the arm. Thus the visual receptive fields of most "face + visual" cells were anchored to the head, not to the eye or arm. To construct a visual receptive field anchored to the arm, it is necessary to integrate the position of the arm, head, and eye. For arm + visual cells, the spontaneous activity, the magnitude of the visual response, and sometimes both were modulated by the position of the arm (37%), the head (75%), and the eye (58%). In contrast, to construct a visual receptive field that is anchored to the head, it is necessary to use the position of the eye, but not of the head or the arm. For face + visual cells, the spontaneous activity and/or response magnitude was modulated by the position of the eyes (88%), but not of the head or the arm (0%). Visual receptive fields anchored to the arm can encode stimulus location in "arm-centered" coordinates, and would be useful for guiding arm movements. Visual receptive fields anchored to the head can likewise encode stimuli in "head-centered" coordinates, useful for guiding head movements. Sixty-three percent of face + visual neurons responded during voluntary movements of the head. We suggest that "body-part-centered" coordinates provide a general solution to a problem of sensory-motor integration: sensory stimuli are located in a coordinate system anchored to a particular body part.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008297 Male Males
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009048 Motor Skills Performance of complex motor acts. Motor Skill,Skill, Motor,Skills, Motor
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D011597 Psychomotor Performance The coordination of a sensory or ideational (cognitive) process and a motor activity. Perceptual Motor Performance,Sensory Motor Performance,Visual Motor Coordination,Coordination, Visual Motor,Coordinations, Visual Motor,Motor Coordination, Visual,Motor Coordinations, Visual,Motor Performance, Perceptual,Motor Performance, Sensory,Motor Performances, Perceptual,Motor Performances, Sensory,Perceptual Motor Performances,Performance, Perceptual Motor,Performance, Psychomotor,Performance, Sensory Motor,Performances, Perceptual Motor,Performances, Psychomotor,Performances, Sensory Motor,Psychomotor Performances,Sensory Motor Performances,Visual Motor Coordinations
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004292 Dominance, Cerebral Dominance of one cerebral hemisphere over the other in cerebral functions. Cerebral Dominance,Hemispheric Specialization,Dominances, Cerebral,Specialization, Hemispheric
D005133 Eye Movements Voluntary or reflex-controlled movements of the eye. Eye Movement,Movement, Eye,Movements, Eye

Related Publications

M S Graziano, and X T Hu, and C G Gross
June 2011, The European journal of neuroscience,
M S Graziano, and X T Hu, and C G Gross
April 2002, Current opinion in neurobiology,
M S Graziano, and X T Hu, and C G Gross
August 2009, Proceedings of the National Academy of Sciences of the United States of America,
M S Graziano, and X T Hu, and C G Gross
September 1998, Proceedings of the National Academy of Sciences of the United States of America,
M S Graziano, and X T Hu, and C G Gross
April 2006, Behavioral neuroscience,
M S Graziano, and X T Hu, and C G Gross
June 2007, Cognitive processing,
M S Graziano, and X T Hu, and C G Gross
January 2004, Neuron,
M S Graziano, and X T Hu, and C G Gross
October 2001, Nature neuroscience,
M S Graziano, and X T Hu, and C G Gross
June 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M S Graziano, and X T Hu, and C G Gross
June 2012, Cortex; a journal devoted to the study of the nervous system and behavior,
Copied contents to your clipboard!