Local and propagated dendritic action potentials evoked by glutamate iontophoresis on rat neocortical pyramidal neurons. 1997

P C Schwindt, and W E Crill
Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195-7290, USA.

Iontophoresis of glutamate at sites on the apical dendrite 278-555 microm from the somata of rat neocortical pyramidal neurons evoked low-threshold, small, slow spikes and/or large, fast spikes in 71% of recorded cells. The amplitude of the small, slow spikes recorded at the soma averaged 9.1 mV, and their apparent threshold was <10 mV positive to resting potential. Both their amplitude and their apparent threshold decreased as the iontophoretic site was moved farther from the soma. These spikes were not abolished by somatic hyperpolarization. When the somata of cells displaying these small spikes were voltage clamped at membrane potentials that prevented somatic or axonic firing, corresponding current spikes could be evoked all-or-none by dendritic depolarization, indicating that the small, slow spikes arose in the dendrite. Similar responses were not observed during somatic depolarization evoked by current pulses or glutamate iontophoresis. These small, slow spikes were abolished by blocking voltage-gated Ca2+ channels but not by blocking Na+ channels or N-methyl-D-aspartate receptors. We conclude that these Ca2+ spikes occurred in a spatially restricted region of the dendrite and were not actively propagated to the soma. In the presence of 10 mM tetraethylammonium chloride, the amplitudes of the iontophoretically evoked Ca2+ spikes were large, similar to those of the Ca2+ spikes evoked by somatic current injection, but their apparent thresholds were 63% lower. We conclude that dendritic K+ channels normally prevent the active propagation of Ca2+ spikes along the dendrite. In 36% of recorded cells dendritic glutamate iontophoresis evoked a Na+ spike with an apparent threshold 63% lower than those evoked by somatic current injection or somatic glutamate iontophoresis. Blockade of these low-threshold Na+ spikes by pharmacological or electrophysiological means often revealed underlying small dendritic Ca2+ spikes. When cells displaying the low-threshold Na+ spikes were voltage clamped at membrane potentials that prevented firing of the soma or axon, corresponding tetrodotoxin-sensitive current spikes could be evoked all-or-none by dendritic depolarization. We conclude that these low-threshold Na+ spikes were initiated in the dendrite, probably by local Ca2+ spikes, and subsequently propagated actively to the soma. Most cells displaying dendritic Na+ spikes fired multiple bursts of action potentials during tonic dendritic depolarization, whereas somatic depolarization of the same cells evoked only regular firing. We discuss the implications of dendritic Ca2+ and Na+ spikes for synaptic integration and neural input-output relations.

UI MeSH Term Description Entries
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

P C Schwindt, and W E Crill
July 2003, The Journal of physiology,
P C Schwindt, and W E Crill
December 1997, The Journal of physiology,
P C Schwindt, and W E Crill
December 1997, The Journal of physiology,
P C Schwindt, and W E Crill
August 2009, Journal of neurophysiology,
P C Schwindt, and W E Crill
December 2008, The European journal of neuroscience,
P C Schwindt, and W E Crill
June 2002, Journal of neurophysiology,
Copied contents to your clipboard!