Network properties of the dentate gyrus in epileptic rats with hilar neuron loss and granule cell axon reorganization. 1997

P S Buckmaster, and F E Dudek
Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523, USA.

Neuron loss in the hilus of the dentate gyrus and granule cell axon reorganization have been proposed as etiologic factors in human temporal lobe epilepsy. To explore these possible epileptogenic mechanisms, electrophysiological and anatomic methods were used to examine the dentate gyrus network in adult rats that had been treated systemically with kainic acid. All kainate-treated rats, but no age-matched vehicle-treated controls, were observed to have spontaneous recurrent motor seizures beginning weeks to months after exposure to kainate. Epileptic kainate-treated rats and control animals were anesthetized for field potential recording from the dentate gyrus in vivo. Epileptic kainate-treated rats displayed spontaneous positivities ("dentate electroencephalographic spikes") with larger amplitude and higher frequency than those in control animals. After electrophysiological recording, rats were perfused and their hippocampi were processed for Nissl and Timm staining. Epileptic kainate-treated rats displayed significant hilar neuron loss and granule cell axon reorganization. It has been hypothesized that hilar neuron loss reduces lateral inhibition in the dentate gyrus, thereby decreasing seizure threshold. To assess lateral inhibition, simultaneous recordings were obtained from the dentate gyrus in different hippocampal lamellae, separated by 1 mm. The perforant path was stimulated with paired-pulse paradigms, and population spike amplitudes were measured. Responses were obtained from one lamella while a recording electrode in a distant lamella leaked saline or the gamma-aminobutyric acid-A receptor antagonist bicuculline. Epileptic kainate-treated and control rats both showed significantly more paired-pulse inhibition when a lateral lamella was hyperexcitable. To assess seizure threshold in the dentate gyrus, two techniques were used. Measurement of stimulus threshold for evoking maximal dentate activation revealed significantly higher thresholds in epileptic kainate-treated rats compared with controls. In contrast, epileptic kainate-treated rats were more likely than controls to discharge spontaneous bursts of population spikes and to display stimulus-triggered afterdischarges when a focal region of the dentate gyrus was disinhibited with bicuculline. These spontaneous bursts and afterdischarges were confined to the disinhibited region and did not spread to other septotemporal levels of the dentate gyrus. Epileptic kainate-treated rats that displayed spontaneous bursts and/or afterdischarges had significantly larger percentages of Timm staining in the granule cell and molecular layers than epileptic kainate-treated rats that failed to show spontaneous bursts or afterdischarges. In summary, this study reveals functional abnormalities in the dentate gyri of epileptic kainate-treated rats; however, lateral inhibition persists, suggesting that vulnerable hilar neurons are not necessary for generating lateral inhibition in the dentate gyrus.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004569 Electroencephalography Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain. EEG,Electroencephalogram,Electroencephalograms

Related Publications

P S Buckmaster, and F E Dudek
November 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P S Buckmaster, and F E Dudek
January 2023, Frontiers in neuroscience,
P S Buckmaster, and F E Dudek
June 2014, Development (Cambridge, England),
P S Buckmaster, and F E Dudek
December 2013, Hippocampus,
Copied contents to your clipboard!