Excitatory and inhibitory vestibular pathways to the extraocular motor nuclei in goldfish. 1997

W Graf, and R Spencer, and H Baker, and R Baker
Laboratoire de Physiologie de la Perception et de l'Action, Centre National de la Recherche Scientifique, Paris, France.

Electrophysiological, ultrastructural, and immunohistochemical techniques were utilized to describe the excitatory and inhibitory vestibular innervation of extraocular motor nuclei in the goldfish. In antidromically activated oculomotor motoneurons, electrical stimulation of the intact contralateral vestibular nerve produced short-latency, variable amplitude electrotonic excitatory postsynaptic potentials (EPSPs) at 0.5-0.7 ms followed by chemical EPSPs at 1.0-1.3 ms. Stimulation of the ipsilateral vestibular nerve produced small amplitude membrane hyperpolarizations at a latency of 1.3-1.7 ms in which equilibrium potentials were slightly more negative than resting potentials. The inhibitory postsynaptic potentials (IPSPs) reversed with large amplitudes after the injection of chloride ions suggesting a proximal soma-dendritic location of terminals exhibiting high efficacy inhibitory synaptic conductances. In antidromically identified abducens motoneurons and putative internuclear neurons, electrical stimulation of the contralateral vestibular nerve produced large-amplitude, short-latency electrotonic EPSPs at 0.5 ms followed by chemical depolarizations at 1.2-1.3 ms. Stimulation of the ipsilateral vestibular nerve evoked IPSPs at 1.4 ms that were reversed after injection of current and/or chloride ions. gamma-Aminobutyric acid (GABA) antibodies labeled inhibitory neurons in vestibular subdivisions with axons projecting into the ipsilateral medial longitudinal fasciculus (MLF). Putative GABAergic terminals surrounded oculomotor, but not abducens, motoneurons retrogradely labeled with horseradish peroxidase. Hence the spatial distribution of GABAergic neurons and terminals appears highly similar in the vestibuloocular system of goldfish and mammals. Electron microscopy of motoneurons in the oculomotor and abducens nucleus showed axosomatic and axodendritic synaptic endings containing spheroidal synaptic vesicles establishing chemical, presumed excitatory, synaptic contacts with asymmetric pre- and/or postsynaptic membrane specializations. The majority of contacts with spheroidal vesicles displayed gap junctions in which the chemical and electrotonic synapses were either en face to dissimilar or adjacent to one another on the same soma/dendritic profiles. Another separate set of axosomatic synaptic endings, presumed to be inhibitory, contained pleiomorphic synaptic vesicles with symmetric pre- and/or postsynaptic membrane specializations that never included gap junctions. Excitatory and inhibitory synaptic contacts appeared equal in number but were more sparsely distributed along the soma-dendritic profiles of oculomotor as compared with abducens motoneurons. Collectively these data provide evidence for both disynaptic vestibular inhibition and excitation in all subdivisions of the extraocular motor nuclei suggesting the basic vestibulooculomotor blueprint to be conserved among vertebrates. We propose that unique vestibular neurons, transmitters, pathways, and synaptic arborizations are homologous structural traits that have been essentially preserved throughout vertebrate phylogeny by a shared developmental plan.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009801 Oculomotor Muscles The muscles that move the eye. Included in this group are the medial rectus, lateral rectus, superior rectus, inferior rectus, inferior oblique, superior oblique, musculus orbitalis, and levator palpebrae superioris. Extraocular Muscles,Extraocular Rectus Muscles,Inferior Oblique Extraocular Muscle,Inferior Oblique Muscles,Levator Palpebrae Superioris,Musculus Orbitalis,Oblique Extraocular Muscles,Oblique Muscle, Inferior,Oblique Muscle, Superior,Oblique Muscles, Extraocular,Rectus Muscles, Extraocular,Superior Oblique Extraocular Muscle,Superior Oblique Muscle,Extraocular Muscle,Extraocular Muscle, Oblique,Extraocular Muscles, Oblique,Extraocular Oblique Muscle,Extraocular Oblique Muscles,Extraocular Rectus Muscle,Inferior Oblique Muscle,Muscle, Oculomotor,Muscles, Oculomotor,Oblique Extraocular Muscle,Oblique Muscle, Extraocular,Oblique Muscles, Inferior,Oblique Muscles, Superior,Oculomotor Muscle,Rectus Muscle, Extraocular,Superior Oblique Muscles
D009802 Oculomotor Nerve The 3d cranial nerve. The oculomotor nerve sends motor fibers to the levator muscles of the eyelid and to the superior rectus, inferior rectus, and inferior oblique muscles of the eye. It also sends parasympathetic efferents (via the ciliary ganglion) to the muscles controlling pupillary constriction and accommodation. The motor fibers originate in the oculomotor nuclei of the midbrain. Cranial Nerve III,Third Cranial Nerve,Nerve III,Nervus Oculomotorius,Cranial Nerve IIIs,Cranial Nerve, Third,Cranial Nerves, Third,Nerve IIIs,Nerve, Oculomotor,Nerve, Third Cranial,Nerves, Oculomotor,Nerves, Third Cranial,Oculomotor Nerves,Oculomotorius, Nervus,Third Cranial Nerves
D012027 Reflex, Vestibulo-Ocular A reflex wherein impulses are conveyed from the cupulas of the SEMICIRCULAR CANALS and from the OTOLITHIC MEMBRANE of the SACCULE AND UTRICLE via the VESTIBULAR NUCLEI of the BRAIN STEM and the median longitudinal fasciculus to the OCULOMOTOR NERVE nuclei. It functions to maintain a stable retinal image during head rotation by generating appropriate compensatory EYE MOVEMENTS. Vestibulo-Ocular Reflex,Reflex, Vestibuloocular,Reflexes, Vestibo-Ocular,Reflexes, Vestibuloocular,Reflex, Vestibulo Ocular,Reflexes, Vestibo Ocular,Vestibo-Ocular Reflexes,Vestibulo Ocular Reflex,Vestibuloocular Reflex,Vestibuloocular Reflexes
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain

Related Publications

W Graf, and R Spencer, and H Baker, and R Baker
January 1974, Experimental brain research,
W Graf, and R Spencer, and H Baker, and R Baker
December 1976, Experimental brain research,
W Graf, and R Spencer, and H Baker, and R Baker
August 2009, Brain & development,
W Graf, and R Spencer, and H Baker, and R Baker
March 2003, Journal of neurophysiology,
W Graf, and R Spencer, and H Baker, and R Baker
March 2016, The Journal of comparative neurology,
W Graf, and R Spencer, and H Baker, and R Baker
July 2021, Cureus,
W Graf, and R Spencer, and H Baker, and R Baker
January 2006, Progress in brain research,
W Graf, and R Spencer, and H Baker, and R Baker
January 1988, Reviews of oculomotor research,
Copied contents to your clipboard!