Inhibitory effects evoked from the anterior hypothalamus are selective for the nociceptive responses of dorsal horn neurons with high- and low-threshold inputs. 1997

B J Workman, and B M Lumb
Department of Physiology, School of Medical Sciences, Bristol, United Kingdom.

The aim of the present study was to examine the selectivity of descending control of nociceptive information in the spinal dorsal horn following neuronal activation at "pressor" sites in the anterior hypothalamus. Extracellular single-unit activity was recorded from 11 dorsal horn neurons in the lower lumbar spinal cord of anesthetized rats. Neurons selected for investigation were those that responded to noxious (pinch and radiant heat >46 degrees C) and nonnoxious (prod, stroke, and/or brush) stimulation within their cutaneous receptive fields on the ipsilateral hind paw. These are referred to as Class 2 neurons. Micropipettes were inserted stereotaxically into the anterior hypothalamus at sites where injection of the excitatory amino acid L-homocysteic acid (L-HCA) evoked increases in arterial blood pressure. The effects of microinjection of L-HCA at "pressor" sites in the anterior hypothalamus were then tested on the responses of Class 2 neurons to noxious and nonnoxious stimulation of their excitatory receptive fields. The high-threshold (pinch and/or radiant heat) responses of 7/7 Class 2 neurons tested were inhibited by an average of 66.3 +/- 8.8% (mean +/- SE) by neuronal activation at hypothalamic pressor sites. The low-threshold (prod) responses of 10/10 Class 2 neurons tested were not inhibited by neuronal activation at hypothalamic pressor sites; in 6 of these cells the response to low-intensity stimulation was increased by between 4 and 20%. Control injections of the inhibitory amino acid gamma-aminobutyric acid (GABA) at the same hypothalamic pressor sites had no significant effects on arterial blood pressure or neuronal activity. With regard to sensory processing in the spinal cord, these data suggest that descending inhibitory control that originates from neurons in pressor regions of the anterior hypothalamus is highly selective for nociceptive inputs to Class 2 neurons.

UI MeSH Term Description Entries
D007032 Hypothalamus, Anterior The front portion of the HYPOTHALAMUS separated into the preoptic region and the supraoptic region. The preoptic region is made up of the periventricular GRAY MATTER of the rostral portion of the THIRD VENTRICLE and contains the preoptic ventricular nucleus and the medial preoptic nucleus. The supraoptic region contains the PARAVENTRICULAR HYPOTHALAMIC NUCLEUS, the SUPRAOPTIC NUCLEUS, the ANTERIOR HYPOTHALAMIC NUCLEUS, and the SUPRACHIASMATIC NUCLEUS. Hypothalamus, Supraoptic,Anterior Hypothalamic Commissure,Anterior Hypothalamic Decussation of Ganser,Anteroventral Periventricular Nucleus,Anterior Hypothalamic Commissures,Anterior Hypothalamus,Commissure, Anterior Hypothalamic,Commissures, Anterior Hypothalamic,Hypothalamic Commissure, Anterior,Hypothalamic Commissures, Anterior,Nucleus, Anteroventral Periventricular,Periventricular Nucleus, Anteroventral,Supraoptic Hypothalamus
D008297 Male Males
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion

Related Publications

B J Workman, and B M Lumb
January 1983, The Japanese journal of physiology,
B J Workman, and B M Lumb
February 1993, Sheng li xue bao : [Acta physiologica Sinica],
Copied contents to your clipboard!