Dual effects of auranofin on prostaglandin E2 production by rat peritoneal macrophages. 1997

M Yamashita, and H Niki, and M Yamada, and M Watanabe-Kobayashi, and S Mue, and K Ohuchi
Department of Pathophysiological Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan.

Incubation of rat peritoneal macrophages in medium containing various concentrations of auranofin (1, 3 and 10 microM) increased prostaglandin E2 production at 4 h in a concentration-dependent manner, in accordance with the increase in the release of [3H]arachidonic acid from membrane phospholipids. However, at 20 h, no stimulation of prostaglandin E2 production by auranofin was observed. When the peritoneal macrophages were incubated in the presence of 12-O-tetradecanoylphorbol 13-acetate (TPA), thapsigargin or A23187, prostaglandin E2 production at 4 and 20 h was enhanced. The stimulator-induced prostaglandin E2 production at 20 h was suppressed by 10 microM of auranofin. Western blot analysis demonstrated that auranofin inhibited the induction of cyclooxygenase 2 by TPA, thapsigargin or A23187 at 4 and 20 h. The level of cyclooxygenase 1 did not change by treatment with these stimulators in the presence or absence of auranofin. These findings suggest that auranofin has dual effects on prostaglandin E2 production: without stimulation, auranofin increases prostaglandin E2 production at 4 h due to the increased release of arachidonic acid which is converted to prostaglandin E2 mainly by cyclooxygenase 1, but inhibits the stimulator-induced late-phase prostaglandin E2 production by inhibiting the induction of cyclooxygenase 2.

UI MeSH Term Description Entries
D007476 Ionophores Chemical agents that increase the permeability of biological or artificial lipid membranes to specific ions. Most ionophores are relatively small organic molecules that act as mobile carriers within membranes or coalesce to form ion permeable channels across membranes. Many are antibiotics, and many act as uncoupling agents by short-circuiting the proton gradient across mitochondrial membranes. Ionophore
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001310 Auranofin An oral chrysotherapeutic agent for the treatment of rheumatoid arthritis. Its exact mechanism of action is unknown, but it is believed to act via immunological mechanisms and alteration of lysosomal enzyme activity. Its efficacy is slightly less than that of injected gold salts, but it is better tolerated, and side effects which occur are potentially less serious. Crisinor,Ridaura,Ridauran,SK&F D 39162,SK&F-39162,SK&F 39162,SK&F39162
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D015232 Dinoprostone The most common and most biologically active of the mammalian prostaglandins. It exhibits most biological activities characteristic of prostaglandins and has been used extensively as an oxytocic agent. The compound also displays a protective effect on the intestinal mucosa. PGE2,PGE2alpha,Prostaglandin E2,Prostaglandin E2alpha,PGE2 alpha,Prepidil Gel,Prostaglandin E2 alpha,Prostenon,E2 alpha, Prostaglandin,E2, Prostaglandin,E2alpha, Prostaglandin,Gel, Prepidil,alpha, PGE2,alpha, Prostaglandin E2

Related Publications

M Yamashita, and H Niki, and M Yamada, and M Watanabe-Kobayashi, and S Mue, and K Ohuchi
March 1999, European journal of pharmacology,
M Yamashita, and H Niki, and M Yamada, and M Watanabe-Kobayashi, and S Mue, and K Ohuchi
October 1984, Agents and actions,
M Yamashita, and H Niki, and M Yamada, and M Watanabe-Kobayashi, and S Mue, and K Ohuchi
October 1983, Prostaglandins, leukotrienes, and medicine,
M Yamashita, and H Niki, and M Yamada, and M Watanabe-Kobayashi, and S Mue, and K Ohuchi
June 1985, Planta medica,
M Yamashita, and H Niki, and M Yamada, and M Watanabe-Kobayashi, and S Mue, and K Ohuchi
November 1981, Prostaglandins and medicine,
M Yamashita, and H Niki, and M Yamada, and M Watanabe-Kobayashi, and S Mue, and K Ohuchi
June 1999, Biochimica et biophysica acta,
M Yamashita, and H Niki, and M Yamada, and M Watanabe-Kobayashi, and S Mue, and K Ohuchi
January 1991, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
M Yamashita, and H Niki, and M Yamada, and M Watanabe-Kobayashi, and S Mue, and K Ohuchi
May 1982, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
M Yamashita, and H Niki, and M Yamada, and M Watanabe-Kobayashi, and S Mue, and K Ohuchi
December 1990, FEMS microbiology immunology,
M Yamashita, and H Niki, and M Yamada, and M Watanabe-Kobayashi, and S Mue, and K Ohuchi
August 1991, Arzneimittel-Forschung,
Copied contents to your clipboard!