An Escherichia coli topB mutant increases deletion and frameshift mutations in the supF target gene. 1997

N Uematsu, and S Eda, and K Yamamoto
Biological Institute, Graduate School of Science, Tohoku University, Sendai, Japan.

We have improved a system to examine forward mutations that occurred in the supF gene of Escherichia coli placed on a multicopy plasmid. Using this system, we determined the mutational specificity for a topB deletion mutator in which topoisomerase III is hampered. The frequency of supF- mutations in topB strain was 4.9 x 10(-7), that is essentially the same as that in wild-type strain, 3.1 x 10(-7). Half the number of the supF- mutations were large deletions, where a specific deletion among a 10-base pair direct repeat dominated, but other types of deletions were also found. Most of the deletions were associated with the presence of directly repeated sequences capable of accounting for their endpoints. Frameshift mutations in topB strain also significantly increased compared with those of wild-type (17 vs. 2%). Base substitutions comprised 27% of the events, specificity of which in topB strain was the same as that in wild-type strain. The present data suggest that topB is a novel class of mutator that strongly induces repeated sequence dependent deletion mutagenesis and high frequencies of frameshift mutagenesis.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004264 DNA Topoisomerases, Type I DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix. DNA Nicking-Closing Protein,DNA Relaxing Enzyme,DNA Relaxing Protein,DNA Topoisomerase,DNA Topoisomerase I,DNA Topoisomerase III,DNA Topoisomerase III alpha,DNA Topoisomerase III beta,DNA Untwisting Enzyme,DNA Untwisting Protein,TOP3 Topoisomerase,TOP3alpha,TOPO IIIalpha,Topo III,Topoisomerase III,Topoisomerase III beta,Topoisomerase IIIalpha,Topoisomerase IIIbeta,DNA Nicking-Closing Proteins,DNA Relaxing Enzymes,DNA Type 1 Topoisomerase,DNA Untwisting Enzymes,DNA Untwisting Proteins,Topoisomerase I,Type I DNA Topoisomerase,III beta, Topoisomerase,III, DNA Topoisomerase,III, Topo,III, Topoisomerase,IIIalpha, TOPO,IIIalpha, Topoisomerase,IIIbeta, Topoisomerase,Topoisomerase III, DNA,Topoisomerase, TOP3,beta, Topoisomerase III
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D016153 Genes, Suppressor Genes that have a suppressor allele or suppressor mutation (SUPPRESSION, GENETIC) which cancels the effect of a previous mutation, enabling the wild-type phenotype to be maintained or partially restored. For example, amber suppressors cancel the effect of an AMBER NONSENSE MUTATION. Amber Suppressor Genes,Frameshift Suppressor Genes,Genes, Amber Suppressor,Genes, Frameshift Suppressor,Genes, Nonsense Mutation Suppressor,Genes, Ochre Suppressor,Genes, Second-Site Suppressor,Nonsense Mutation Suppressor Genes,Ochre Suppressor Genes,Second-Site Suppressor Genes,Genes, Opal Suppressor,Suppressor Genes,Amber Suppressor Gene,Frameshift Suppressor Gene,Gene, Amber Suppressor,Gene, Frameshift Suppressor,Gene, Ochre Suppressor,Gene, Opal Suppressor,Gene, Second-Site Suppressor,Gene, Suppressor,Genes, Second Site Suppressor,Ochre Suppressor Gene,Opal Suppressor Gene,Opal Suppressor Genes,Second Site Suppressor Genes,Second-Site Suppressor Gene,Suppressor Gene,Suppressor Gene, Amber,Suppressor Gene, Frameshift,Suppressor Gene, Ochre,Suppressor Gene, Opal,Suppressor Gene, Second-Site,Suppressor Genes, Amber,Suppressor Genes, Frameshift,Suppressor Genes, Ochre,Suppressor Genes, Opal,Suppressor Genes, Second-Site
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses

Related Publications

N Uematsu, and S Eda, and K Yamamoto
December 1998, Journal of radiation research,
N Uematsu, and S Eda, and K Yamamoto
January 1983, Molecular & general genetics : MGG,
N Uematsu, and S Eda, and K Yamamoto
August 2004, Biochemical and biophysical research communications,
N Uematsu, and S Eda, and K Yamamoto
March 1999, Mutagenesis,
N Uematsu, and S Eda, and K Yamamoto
January 2020, Genes and environment : the official journal of the Japanese Environmental Mutagen Society,
Copied contents to your clipboard!