Protein kinase C isoenzymes in airway smooth muscle. 1997

B L Webb, and M A Lindsay, and P J Barnes, and M A Giembycz
Thoracic Medicine, Imperial College School of Medicine at the National Heart and Lung Institute, Dovehouse Street, London SW3 6LY, U.K.

The protein kinase C (PKC) isoenzymes expressed by bovine tracheal smooth muscle (BTSM) were identified at the protein and mRNA levels. Western immunoblot analyses reliably identified PKCalpha, PKCbetaI and PKCbetaII. In some experiments immunoreactive bands corresponding to PKCdelta, PKCepsilon and PKCTheta were also labelled, whereas the gamma, eta and zeta isoforms of PKC were never detected. Reverse transcriptase PCR of RNA extracted from BTSM using oligonucleotide primer pairs designed to recognize unique sequences in the PKC genes for which protein was absent or not reproducibly identified by immunoblotting, amplified cDNA fragments that corresponded to the predicted sizes of PKCdelta, PKCepsilon and PKCzeta, which was confirmed by Southern blotting. Anion-exchange chromatography of the soluble fraction of BTSM following homogenization in Ca2+-free buffer resolved two major peaks of activity. Using epsilon-peptide as the substrate, the first peak of activity was dependent upon Ca2+ and 4beta-PDBu (PDBu=phorbol 12, 13-dibutyrate), and represented a mixture of PKCs alpha, betaI and betaII. In contrast, the second peak of activity, which eluted at much higher ionic strength, also appeared to comprise a combination of conventional PKCs that were arbitrarily denoted PKCalpha', PKCbetaI' and PKCbetaII'. However, these novel enzymes were cofactor-independent and did not bind [3H]PDBu, but were equally sensitive to the PKC inhibitor GF 109203X compared with bona fide conventional PKCs, and migrated on SDS/polyacrylamide gels as 81 kDa polypeptides. Taken together, these data suggest that PKCs alpha', betaI' and betaII' represent modified, but not proteolysed, forms of their respective native enzymes that retain antibody immunoreactivity and sensitivity to PKC inhibitors, but have lost their sensitivity to Ca2+ and PDBu when epsilon-peptide is used as the substrate.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B L Webb, and M A Lindsay, and P J Barnes, and M A Giembycz
September 1995, American journal of respiratory cell and molecular biology,
B L Webb, and M A Lindsay, and P J Barnes, and M A Giembycz
March 2006, European journal of pharmacology,
B L Webb, and M A Lindsay, and P J Barnes, and M A Giembycz
November 1994, Canadian journal of physiology and pharmacology,
B L Webb, and M A Lindsay, and P J Barnes, and M A Giembycz
January 1996, Pflugers Archiv : European journal of physiology,
B L Webb, and M A Lindsay, and P J Barnes, and M A Giembycz
November 1992, Hypertension (Dallas, Tex. : 1979),
B L Webb, and M A Lindsay, and P J Barnes, and M A Giembycz
June 2009, American journal of respiratory cell and molecular biology,
B L Webb, and M A Lindsay, and P J Barnes, and M A Giembycz
May 1991, Journal of applied physiology (Bethesda, Md. : 1985),
B L Webb, and M A Lindsay, and P J Barnes, and M A Giembycz
July 2004, American journal of respiratory cell and molecular biology,
B L Webb, and M A Lindsay, and P J Barnes, and M A Giembycz
August 2002, American journal of respiratory cell and molecular biology,
B L Webb, and M A Lindsay, and P J Barnes, and M A Giembycz
March 1995, European journal of pharmacology,
Copied contents to your clipboard!