Refinements of the finite-size pencil beam model of three-dimensional photon dose calculation. 1997

O Z Ostapiak, and Y Zhu, and J Van Dyk
Ontario Cancer Institute, Toronto, Canada.

Modern three-dimensional (3-D) photon dose calculation algorithms need to be fast and accurate if they are to be practical for treatment optimization. Refinements to a previously proposed finite-size pencil beam (FSPB) method are presented in order to fulfill these needs. Specifically, a fast Fourier transform (FFT) convolution technique is used to speed calculation of the FSPB; the fluence spectrum is modeled, and the effects of finite source size, a Gaussian x-ray source intensity profile and partial transmission through a multileaf collimator (MLC) leaf are approximated. The use of FFT techniques in the calculation of small diverging fields involves approximations that are investigated for a 6 MV beam and shown to introduce errors that vary with energy but do not exceed 0.7% on the central axis. Dose distributions calculated by FSPB superposition are in excellent agreement with those calculated by full field FFT convolution. Two key advances over the original implementation of the FSPB model are demonstrated: the fast calculation of the FSPB facilitates development, and the incorporation of realistic beam parameters enables accurate modeling of clinical beams.

UI MeSH Term Description Entries
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D011880 Radiotherapy Planning, Computer-Assisted Computer-assisted mathematical calculations of beam angles, intensities of radiation, and duration of irradiation in radiotherapy. Computer-Assisted Radiotherapy Planning,Dosimetry Calculations, Computer-Assisted,Planning, Computer-Assisted Radiotherapy,Calculation, Computer-Assisted Dosimetry,Calculations, Computer-Assisted Dosimetry,Computer Assisted Radiotherapy Planning,Computer-Assisted Dosimetry Calculation,Computer-Assisted Dosimetry Calculations,Dosimetry Calculation, Computer-Assisted,Dosimetry Calculations, Computer Assisted,Planning, Computer Assisted Radiotherapy,Radiotherapy Planning, Computer Assisted
D011882 Radiotherapy, High-Energy Radiotherapy using high-energy (megavolt or higher) ionizing radiation. Types of radiation include gamma rays, produced by a radioisotope within a teletherapy unit; x-rays, electrons, protons, alpha particles (helium ions) and heavy charged ions, produced by particle acceleration; and neutrons and pi-mesons (pions), produced as secondary particles following bombardment of a target with a primary particle. Megavolt Radiotherapy,High-Energy Radiotherapy,Radiotherapy, Megavolt,High Energy Radiotherapy,Radiotherapy, High Energy
D005069 Evaluation Studies as Topic Works about studies that determine the effectiveness or value of processes, personnel, and equipment, or the material on conducting such studies. Critique,Evaluation Indexes,Evaluation Methodology,Evaluation Report,Evaluation Research,Methodology, Evaluation,Pre-Post Tests,Qualitative Evaluation,Quantitative Evaluation,Theoretical Effectiveness,Use-Effectiveness,Critiques,Effectiveness, Theoretical,Evaluation Methodologies,Evaluation Reports,Evaluation, Qualitative,Evaluation, Quantitative,Evaluations, Qualitative,Evaluations, Quantitative,Indexes, Evaluation,Methodologies, Evaluation,Pre Post Tests,Pre-Post Test,Qualitative Evaluations,Quantitative Evaluations,Report, Evaluation,Reports, Evaluation,Research, Evaluation,Test, Pre-Post,Tests, Pre-Post,Use Effectiveness
D005583 Fourier Analysis Analysis based on the mathematical function first formulated by Jean-Baptiste-Joseph Fourier in 1807. The function, known as the Fourier transform, describes the sinusoidal pattern of any fluctuating pattern in the physical world in terms of its amplitude and its phase. It has broad applications in biomedicine, e.g., analysis of the x-ray crystallography data pivotal in identifying the double helical nature of DNA and in analysis of other molecules, including viruses, and the modified back-projection algorithm universally used in computerized tomography imaging, etc. (From Segen, The Dictionary of Modern Medicine, 1992) Fourier Series,Fourier Transform,Analysis, Cyclic,Analysis, Fourier,Cyclic Analysis,Analyses, Cyclic,Cyclic Analyses,Series, Fourier,Transform, Fourier
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D013679 Technology, Radiologic The application of scientific knowledge or technology to the field of radiology. The applications center mostly around x-ray or radioisotopes for diagnostic and therapeutic purposes but the technological applications of any radiation or radiologic procedure is within the scope of radiologic technology. Radiologic Technology,Technology, Radiological,Radiological Technology
D017785 Photons Discrete concentrations of energy, apparently massless elementary particles, that move at the speed of light. They are the unit or quantum of electromagnetic radiation. Photons are emitted when electrons move from one energy state to another. (From Hawley's Condensed Chemical Dictionary, 11th ed)

Related Publications

O Z Ostapiak, and Y Zhu, and J Van Dyk
January 1992, Medical physics,
O Z Ostapiak, and Y Zhu, and J Van Dyk
January 1992, Medical physics,
O Z Ostapiak, and Y Zhu, and J Van Dyk
October 2009, Physics in medicine and biology,
O Z Ostapiak, and Y Zhu, and J Van Dyk
March 2003, Medical physics,
O Z Ostapiak, and Y Zhu, and J Van Dyk
June 1994, Medical physics,
O Z Ostapiak, and Y Zhu, and J Van Dyk
April 2005, Physics in medicine and biology,
O Z Ostapiak, and Y Zhu, and J Van Dyk
June 2011, Physics in medicine and biology,
O Z Ostapiak, and Y Zhu, and J Van Dyk
October 2016, Medical physics,
Copied contents to your clipboard!