Opposing effects of phorbol esters on transmitter release and calcium currents at frog motor nerve endings. 1997

R S Redman, and T J Searl, and J K Hirsh, and E M Silinsky
Department of Molecular Pharmacology, Northwestern University Medical School, Chicago, IL 60611, USA.

1. Phorbol esters activate protein kinase C (PKC) and also increase the secretion of neurotransmitter substances by an unknown mechanism. To evaluate whether the stimulatory effects of such agents on acetylcholine (ACh) secretion occur as a consequence of stimulation of Ca2+ entry, we made electrophysiological measurements of ACh secretion (i.e. endplate potentials, EPPs) and the component of the prejunctional perineural voltage change associated with nerve terminal calcium currents (perineural calcium current) at frog neuromuscular junctions. 2. In the first series of experiments, modest concentrations of K+ channel blockers were employed so that simultaneous measurements of EPP amplitudes and perineural calcium currents could be made. In these experiments, 12-O-tetradecanoylphorbol 13-acetate (TPA; 162 nM) and phorbol 12,13-dibutyrate (PDBu; 100-200 nM) each increased ACh release but simultaneously decreased the calcium component of the prejunctional perineural current TPA and PDBu also inhibited perineural calcium currents in the presence of higher concentrations of K+ channel blockers. 3. Blockade of Ca2+ channels by Cd2+ prevented the action of PKC stimulators on perineural waveforms. 4. The inactive compound 4-alpha-phorbol 12-myristate 13-acetate (150 nM) did not affect EPP amplitudes or perineural currents. 5. The extracellular [Ca2+]-ACh release relationship was increased in maximum by PDBu without any change in the potency of Ca2+ to support evoked ACh release. 6. The results demonstrate that phorbol esters increase neurotransmitter secretion whilst simultaneously decreasing the nerve ending calcium currents that promote evoked release. The results, which suggest that the optimal control point for secretion might not be the calcium channel but rather a component of the secretory apparatus, are discussed in conjunction with the possible target sites for phorbol esters in the nerve ending.

UI MeSH Term Description Entries
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D010703 Phorbol Esters Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C. Phorbol Diester,Phorbol Ester,Phorbol Diesters,Diester, Phorbol,Diesters, Phorbol,Ester, Phorbol,Esters, Phorbol
D010704 Phorbols The parent alcohol of the tumor promoting compounds from CROTON OIL (Croton tiglium). Tigliane,Tiglianes
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

R S Redman, and T J Searl, and J K Hirsh, and E M Silinsky
January 2000, British journal of pharmacology,
R S Redman, and T J Searl, and J K Hirsh, and E M Silinsky
January 1989, Journal of neural transmission,
R S Redman, and T J Searl, and J K Hirsh, and E M Silinsky
November 1992, The Journal of physiology,
R S Redman, and T J Searl, and J K Hirsh, and E M Silinsky
January 1987, Neirofiziologiia = Neurophysiology,
R S Redman, and T J Searl, and J K Hirsh, and E M Silinsky
April 1995, Journal of neuroscience methods,
R S Redman, and T J Searl, and J K Hirsh, and E M Silinsky
June 2003, Molecular pharmacology,
R S Redman, and T J Searl, and J K Hirsh, and E M Silinsky
April 1996, Brain research,
R S Redman, and T J Searl, and J K Hirsh, and E M Silinsky
February 1986, Pflugers Archiv : European journal of physiology,
R S Redman, and T J Searl, and J K Hirsh, and E M Silinsky
October 1994, British journal of pharmacology,
R S Redman, and T J Searl, and J K Hirsh, and E M Silinsky
July 1990, Brain research,
Copied contents to your clipboard!