The receptor-like neural network for modeling corticosteroid and testosterone binding globulins. 1997

J Polański
Institute of Chemistry, University of Silesia, Katowice, Poland.

A neural-net method for simulation of corticosteroid and testosterone binding globulin (CBG, TBG)-ligand interactions is presented. Molecular modeling provides the geometry and partial atomic charges of 31 steroid molecules. The atomic coordinates within the molecule of the compound of the highest affinity are then used to train a self-organizing map (SOM) that forms a template for the comparison to other molecules. Comparison is done using a series of normalized patterns produced by the SOM. The template SOM, after overlaying on the set of random vectors, mimics the topology of the receptor site and is used to train unsupervisedly a neuron capable of recognizing the degree of similarity between the reference and tested patterns. A good correlation is observed for signals generated by the neuron plotted against the experimental CBG affinities. For TBG affinity modeling a modified procedure is designed which is capable of separating electrostatic and shape effects. The high predictive power of the model is achieved by keeping close analogy to the processes taking place at the real receptor sites.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D011944 Receptors, Androgen Proteins, generally found in the CYTOPLASM, that specifically bind ANDROGENS and mediate their cellular actions. The complex of the androgen and receptor migrates to the CELL NUCLEUS where it induces transcription of specific segments of DNA. Androgen Receptors,5 alpha-Dihydrotestosterone Receptor,Androgen Receptor,Dihydrotestosterone Receptors,Receptor, Testosterone,Receptors, Androgens,Receptors, Dihydrotestosterone,Receptors, Stanolone,Stanolone Receptor,Testosterone Receptor,5 alpha Dihydrotestosterone Receptor,Androgens Receptors,Receptor, 5 alpha-Dihydrotestosterone,Receptor, Androgen,Receptor, Stanolone,Stanolone Receptors,alpha-Dihydrotestosterone Receptor, 5
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone
D014156 Transcortin A serpin family member that binds to and transports GLUCOCORTICOIDS in the BLOOD. Corticosteroid-Binding Globulin,Serpin A6,Corticosteroid Binding Globulin
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D016571 Neural Networks, Computer A computer architecture, implementable in either hardware or software, modeled after biological neural networks. Like the biological system in which the processing capability is a result of the interconnection strengths between arrays of nonlinear processing nodes, computerized neural networks, often called perceptrons or multilayer connectionist models, consist of neuron-like units. A homogeneous group of units makes up a layer. These networks are good at pattern recognition. They are adaptive, performing tasks by example, and thus are better for decision-making than are linear learning machines or cluster analysis. They do not require explicit programming. Computational Neural Networks,Connectionist Models,Models, Neural Network,Neural Network Models,Neural Networks (Computer),Perceptrons,Computational Neural Network,Computer Neural Network,Computer Neural Networks,Connectionist Model,Model, Connectionist,Model, Neural Network,Models, Connectionist,Network Model, Neural,Network Models, Neural,Network, Computational Neural,Network, Computer Neural,Network, Neural (Computer),Networks, Computational Neural,Networks, Computer Neural,Networks, Neural (Computer),Neural Network (Computer),Neural Network Model,Neural Network, Computational,Neural Network, Computer,Neural Networks, Computational,Perceptron

Related Publications

J Polański
August 2020, Molecular and cellular endocrinology,
J Polański
August 1976, The American journal of clinical nutrition,
J Polański
September 1980, American journal of obstetrics and gynecology,
J Polański
January 2008, Progress in brain research,
J Polański
April 2008, Neural computation,
J Polański
February 2016, IEEE transactions on neural networks and learning systems,
J Polański
November 2013, IEEE transactions on neural networks and learning systems,
J Polański
September 1968, The Journal of clinical investigation,
Copied contents to your clipboard!