Electrical and mechanical modulations by oxygen-derived free-radical generating systems in guinea-pig heart muscles. 1997

H Satoh, and K Matsui
Department of Pharmacology, Nara Medical University, Japan.

The effects of free-radical generating systems and angiotensin-converting enzyme (ACE) inhibitors on the action potentials and contractile force in guinea-pig cardiac muscles were examined using conventional microelectrode and whole-cell voltage-clamp methods at 36 degrees C. Hydrogen peroxide (30-100 microM) prolonged 50%, 75% and 90% repolarization of action-potential duration (APD) approximately 15-25 min after its application. But the longer exposure reversed the APD shortening in a concentration-dependent manner. Other action-potential parameters were not altered to a significant extent. The contractile force was increased. Longer exposure inhibited the enhanced force (but it was still larger than control). The effects on the spontaneous action potential from right atrial muscle were almost the same. In whole-cell voltage-clamp experiments, H2O2 (100 microM) inhibited L-type Ca2+ current and enhanced delayed rectifier K+ current. The effects of light-activated rose bengal (10-100 nM) on the APD were similar to, but more potent than, those of H2O2. The response was observed rapidly after a light illumination. During exposure to rose bengal (100 nM), abnormal spontaneous action potentials or arrhythmias such as a bigeminy occurred, presumably because of early and delayed afterdepolarizations. The responses were irreversible. At 300 microM ACE inhibitors, captopril and enalapril, protected the changes induced by these free radicals. These results indicate that H2O2 has a dual, time-dependent, action on the APD and rose bengal with light illumination produced the responses rapidly. The oxygen-derived free radicals increased [Ca]i and then cellular Ca2+ overload occurred. These responses were protected by ACE inhibitors.

UI MeSH Term Description Entries
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000806 Angiotensin-Converting Enzyme Inhibitors A class of drugs whose main indications are the treatment of hypertension and heart failure. They exert their hemodynamic effect mainly by inhibiting the renin-angiotensin system. They also modulate sympathetic nervous system activity and increase prostaglandin synthesis. They cause mainly vasodilation and mild natriuresis without affecting heart rate and contractility. ACE Inhibitor,ACE Inhibitors,Angiotensin Converting Enzyme Inhibitor,Angiotensin I-Converting Enzyme Inhibitor,Angiotensin-Converting Enzyme Inhibitor,Kininase II Inhibitor,Kininase II Inhibitors,Angiotensin I-Converting Enzyme Inhibitors,Angiotensin-Converting Enzyme Antagonists,Antagonists, Angiotensin-Converting Enzyme,Antagonists, Kininase II,Inhibitors, ACE,Inhibitors, Angiotensin-Converting Enzyme,Inhibitors, Kininase II,Kininase II Antagonists,Angiotensin Converting Enzyme Antagonists,Angiotensin Converting Enzyme Inhibitors,Angiotensin I Converting Enzyme Inhibitor,Angiotensin I Converting Enzyme Inhibitors,Antagonists, Angiotensin Converting Enzyme,Enzyme Antagonists, Angiotensin-Converting,Enzyme Inhibitor, Angiotensin-Converting,Enzyme Inhibitors, Angiotensin-Converting,II Inhibitor, Kininase,Inhibitor, ACE,Inhibitor, Angiotensin-Converting Enzyme,Inhibitor, Kininase II,Inhibitors, Angiotensin Converting Enzyme

Related Publications

H Satoh, and K Matsui
December 1988, Journal of molecular and cellular cardiology,
H Satoh, and K Matsui
May 1989, European journal of pharmacology,
H Satoh, and K Matsui
November 1989, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
H Satoh, and K Matsui
April 1977, Archives internationales de physiologie et de biochimie,
H Satoh, and K Matsui
January 1975, The Japanese journal of physiology,
H Satoh, and K Matsui
January 1985, The Japanese journal of physiology,
H Satoh, and K Matsui
February 1989, The Journal of surgical research,
Copied contents to your clipboard!